Download citation
Download citation
link to html
The title compound, C14H12O2N2, consists of a phenyl­amino group and a 2-phenyl-1,2-ethanedione 1-oxime group. Intermolecular O—H...N, N—H...O and intramolecular N—H...O hydrogen bonds [O...N 2.776 (1), 3.086 (1) and 2.574 (1) Å] are highly effective in forming polymeric chains, thereby stabilizing the crystal structure. The oxime group has the E configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010882/wn6162sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010882/wn6162Isup2.hkl
Contains datablock I

CCDC reference: 214857

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.088
  • Data-to-parameter ratio = 16.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Intermolecular hydrogen bonding combines moderate strength and directionality (Karle et al., 1996) in linking molecules to form supramolecular structures; this has received considerable attention with respect to directional non-covalent intermolecular interactions (Etter et al., 1990).

The oxime (–CN—OH) moiety is a functional group that has not been extensively explored in crystal engineering. It is amphiprotic, with a slightly basic N atom and a mildly acidic hydroxyl group. It is also potentially ambident, with possibilities of coordination through nitrogen and/or O atoms. In the solid state, oximes are usually associated via O—H···N hydrogen bonds of length ~2.8 Å.

Oxime groups possess stronger hydrogen-bonding capabilities than alcohols, phenols and carboxylic acids (Marsman et al., 1999). Structurally characterized oxime moieties are much less common than carboxylic acids and amides, but, from a supramolecular perspective, this functionality does have some unique and desirable features (Aakeröy et al., 2001). In general, oxime and dioxime derivatives are very important compounds in chemical industry and medicine (Sevagapandian et al., 2000).

The structure determination of the title molecule, (I), was carried out in order to investigate the strength of the hydrogen bonding capability of the oxime group and to compare the geometry of the oxime moiety with those found in 2,3-dimethylquinoxaline-dimethylglyoxime (1/1), (II) (Hökelek, T., Batı et al., 2001), 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime, (III) (Hökelek, T., Zülfikaroğlu et al., 2001), and N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, (IV) (Hökelek et al., 2003).

The title compound, (I) (Fig. 1), consists of phenylamino and 2-phenyl-1,2-ethanedione 1-oxime moieties. The dihedral angles between the oxime plane A (O2/N2/C7) and the non-coplanar phenyl rings B (C1—C6) and C (C9—C14) are A/B = 46.29 (6), A/C =56.43 (7) and B/C = 68.02 (4)°.

The steric effects of the substituents bonded to the C atom of the oxime group may influence the bond lengths and angles of the oxime moiety (Table 1). Some significant changes in the geometry of the oxime moiety are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)–(IV) (Table 2).

The oxime moiety has an E configuration [C8—C7—N2—O2 = −169.51 (8)°; Chertanova et al., 1994]. In this configuration, the oxime group is involved as a donor in intermolecular hydrogen bonding [O2—H2 0.956 (15) Å, O2···N2i 2.776 (1) Å, H2···N2i 1.885 (16) Å and O2—H2···N2i 153.93(1.37)°; symmetry code: (i) −x, −y, −z + 1]. There are also N1—H1···O2 intramolecular [N1—H1 0.880 (13) Å, N1···O2 2.574 (1) Å, H1···O2 2.255 (12) Å and N1—H1···O2 101.13 (94)°] and N1—H1···O1ii intermolecular [N1—H1 0.880 (13) Å, N1···O1ii 3.086 (1) Å, H1···O1ii 2.348 (13) Å and N1—H1···O1ii 141.57(1.14)°; symmetry code: (ii) x + 0.5, −y + 0.5, z] hydrogen bonds.

The inter- and intramolecular hydrogen bonds are highly effective in forming polymeric chains, thereby stabilizing the crystal structure. As can be seen from the packing diagram (Fig. 2), the chains are approximately parallel to the (110) plane. Dipole–dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Experimental top

A solution of p-toluidine (0.03 mol, 4.86 g) in dichloromethane (20 ml) was added dropwise to a solution of ω-chloroisonitrosoacetophenone (0.015 mol, 2.75 g) in dichloromethane (40 ml). The precipitated product was filtered off, and the resulting solution was allowed to stand for 3 d at room temperature for crystallization to occur.

Refinement top

The H-atom positions were located in a difference synthesis and refined isotropically [C—H = 0.929 (15)–0.988 (17) Å].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-Hydroxy-2-oxo-2,N'-diphenylacetamidine top
Crystal data top
C14H12N2O2F(000) = 504
Mr = 240.26Dx = 1.288 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 10547 reflections
a = 10.0106 (9) Åθ = 1.7–29.5°
b = 10.2280 (6) ŵ = 0.09 mm1
c = 12.1627 (7) ÅT = 293 K
β = 95.763 (6)°Block, yellow
V = 1239.03 (15) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1990 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Plane graphite monochromatorθmax = 29.5°, θmin = 1.7°
Detector resolution: 6.67 pixels mm-1h = 1313
ϕ scansk = 1414
12031 measured reflectionsl = 1616
3434 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034All H-atom parameters refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
3434 reflectionsΔρmax = 0.11 e Å3
212 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (5)
Crystal data top
C14H12N2O2V = 1239.03 (15) Å3
Mr = 240.26Z = 4
Monoclinic, P21/aMo Kα radiation
a = 10.0106 (9) ŵ = 0.09 mm1
b = 10.2280 (6) ÅT = 293 K
c = 12.1627 (7) Å0.35 × 0.25 × 0.15 mm
β = 95.763 (6)°
Data collection top
Stoe IPDS-II
diffractometer
1990 reflections with I > 2σ(I)
12031 measured reflectionsRint = 0.036
3434 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 0.81Δρmax = 0.11 e Å3
3434 reflectionsΔρmin = 0.11 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.08246 (7)0.03456 (9)0.39551 (7)0.0601 (2)
O10.28128 (7)0.22626 (8)0.24449 (6)0.0588 (2)
N20.05908 (8)0.04650 (9)0.38944 (7)0.0485 (2)
H1410.2382 (14)0.1326 (13)0.3454 (11)0.074 (4)*
H610.2295 (14)0.0217 (14)0.0926 (13)0.079 (4)*
H1110.6741 (17)0.0310 (15)0.3595 (12)0.093 (5)*
H210.0439 (15)0.2600 (13)0.0610 (11)0.075 (4)*
H1310.4004 (17)0.2629 (19)0.4131 (14)0.104 (5)*
H510.3160 (16)0.0040 (15)0.0883 (13)0.088 (5)*
H1010.5068 (16)0.1648 (16)0.2997 (13)0.092 (5)*
H1210.6202 (16)0.1854 (16)0.4198 (13)0.095 (5)*
H310.0308 (17)0.2798 (16)0.1280 (14)0.099 (5)*
H410.2172 (16)0.1578 (16)0.2007 (15)0.099 (5)*
H10.0526 (14)0.1113 (12)0.2210 (10)0.063 (3)*
H20.1033 (14)0.0063 (15)0.4702 (13)0.088 (5)*
C80.25389 (9)0.11823 (10)0.28165 (8)0.0437 (2)
C70.10764 (9)0.07955 (9)0.29114 (8)0.0422 (2)
N10.03461 (9)0.10130 (9)0.20572 (7)0.0504 (2)
C90.35594 (9)0.02925 (10)0.31971 (8)0.0454 (2)
C10.08763 (10)0.11680 (11)0.09424 (8)0.0487 (2)
C140.32688 (13)0.09844 (12)0.35132 (11)0.0607 (3)
C100.48633 (11)0.07446 (14)0.32117 (10)0.0597 (3)
C110.58403 (13)0.00463 (16)0.35623 (11)0.0717 (4)
C20.02954 (13)0.20653 (13)0.02900 (9)0.0608 (3)
C30.07830 (15)0.22127 (15)0.08039 (11)0.0752 (4)
C120.55340 (15)0.12870 (16)0.39080 (12)0.0767 (4)
C50.24206 (15)0.05794 (16)0.06027 (11)0.0754 (4)
C60.19269 (12)0.04083 (13)0.04916 (10)0.0611 (3)
C40.18491 (16)0.14771 (16)0.12421 (11)0.0780 (4)
C130.42587 (16)0.17721 (15)0.38677 (13)0.0782 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0358 (4)0.0903 (6)0.0533 (4)0.0054 (4)0.0000 (3)0.0140 (4)
O10.0511 (4)0.0564 (5)0.0691 (5)0.0101 (3)0.0073 (3)0.0150 (4)
N20.0351 (4)0.0621 (5)0.0477 (5)0.0038 (4)0.0007 (3)0.0072 (4)
C80.0415 (5)0.0486 (6)0.0402 (5)0.0042 (4)0.0005 (4)0.0006 (4)
C70.0393 (5)0.0447 (5)0.0422 (5)0.0007 (4)0.0016 (4)0.0011 (4)
N10.0379 (4)0.0710 (6)0.0417 (4)0.0007 (4)0.0016 (3)0.0027 (4)
C90.0411 (5)0.0514 (6)0.0427 (5)0.0010 (4)0.0004 (4)0.0024 (4)
C10.0454 (5)0.0593 (6)0.0410 (5)0.0069 (4)0.0026 (4)0.0019 (4)
C140.0556 (7)0.0502 (7)0.0753 (8)0.0032 (5)0.0020 (5)0.0008 (5)
C100.0424 (6)0.0698 (8)0.0668 (7)0.0016 (5)0.0048 (5)0.0019 (6)
C110.0456 (7)0.0915 (10)0.0785 (9)0.0113 (6)0.0093 (6)0.0066 (7)
C20.0619 (7)0.0713 (8)0.0483 (6)0.0042 (6)0.0011 (5)0.0030 (5)
C30.0857 (9)0.0875 (10)0.0511 (7)0.0005 (8)0.0010 (6)0.0118 (7)
C120.0677 (9)0.0879 (10)0.0753 (8)0.0362 (8)0.0108 (6)0.0102 (7)
C50.0708 (8)0.0948 (10)0.0572 (7)0.0034 (8)0.0098 (6)0.0163 (7)
C60.0604 (7)0.0713 (8)0.0508 (6)0.0059 (6)0.0022 (5)0.0057 (6)
C40.0875 (10)0.0964 (11)0.0469 (7)0.0090 (8)0.0098 (6)0.0014 (7)
C130.0818 (10)0.0557 (8)0.0962 (10)0.0188 (7)0.0037 (7)0.0041 (7)
Geometric parameters (Å, º) top
O2—N21.4167 (10)C10—H1010.977 (16)
O2—H20.956 (16)C11—C121.362 (2)
O1—C81.2147 (12)C11—H1110.977 (17)
N2—C71.2897 (12)C2—C31.3786 (17)
C8—C91.4768 (14)C2—H210.966 (15)
C8—C71.5098 (13)C3—C41.369 (2)
C7—N11.3475 (13)C3—H310.988 (17)
N1—C11.4145 (13)C12—C131.375 (2)
N1—H10.880 (13)C12—H1210.977 (17)
C9—C141.3841 (16)C5—C41.365 (2)
C9—C101.3866 (15)C5—C61.3836 (18)
C1—C61.3765 (16)C5—H510.959 (16)
C1—C21.3795 (17)C6—H610.929 (15)
C14—C131.3794 (18)C4—H410.959 (18)
C14—H1410.964 (14)C13—H1310.959 (19)
C10—C111.3698 (18)
N2—O2—H2101.4 (8)C12—C11—H111121.0 (9)
C7—N2—O2110.66 (8)C10—C11—H111118.9 (9)
O1—C8—C9122.67 (9)C3—C2—C1119.94 (12)
O1—C8—C7116.60 (9)C3—C2—H21120.5 (8)
C9—C8—C7120.70 (8)C1—C2—H21119.5 (8)
N2—C7—N1125.09 (9)C4—C3—C2120.15 (14)
N2—C7—C8114.32 (8)C4—C3—H31120.5 (10)
N1—C7—C8119.66 (8)C2—C3—H31119.2 (10)
C7—N1—C1125.25 (9)C11—C12—C13120.41 (13)
C7—N1—H1117.4 (8)C11—C12—H121121.5 (9)
C1—N1—H1117.2 (8)C13—C12—H121118.1 (9)
C14—C9—C10118.88 (10)C4—C5—C6120.23 (13)
C14—C9—C8122.40 (9)C4—C5—H51122.5 (9)
C10—C9—C8118.70 (10)C6—C5—H51117.3 (10)
C6—C1—C2119.72 (10)C1—C6—C5119.78 (13)
C6—C1—N1121.11 (10)C1—C6—H61119.5 (9)
C2—C1—N1119.13 (10)C5—C6—H61120.7 (9)
C13—C14—C9120.03 (13)C5—C4—C3120.16 (12)
C13—C14—H141120.5 (8)C5—C4—H41120.4 (10)
C9—C14—H141119.4 (8)C3—C4—H41119.4 (10)
C11—C10—C9120.63 (13)C12—C13—C14119.94 (14)
C11—C10—H101120.3 (9)C12—C13—H131122.3 (10)
C9—C10—H101119.0 (9)C14—C13—H131117.6 (10)
C12—C11—C10120.04 (13)
O2—N2—C7—N10.65 (14)C8—C9—C14—C13179.66 (11)
O2—N2—C7—C8169.51 (8)C14—C9—C10—C111.81 (17)
O1—C8—C7—N2123.44 (10)C8—C9—C10—C11179.76 (11)
C9—C8—C7—N254.57 (12)C9—C10—C11—C120.4 (2)
O1—C8—C7—N146.09 (13)C6—C1—C2—C31.09 (19)
C9—C8—C7—N1135.90 (10)N1—C1—C2—C3178.81 (11)
N2—C7—N1—C1169.24 (10)C1—C2—C3—C40.5 (2)
C8—C7—N1—C122.45 (15)C10—C11—C12—C132.5 (2)
O1—C8—C9—C14173.21 (10)C2—C1—C6—C52.07 (18)
C7—C8—C9—C148.90 (14)N1—C1—C6—C5179.75 (11)
O1—C8—C9—C105.16 (15)C4—C5—C6—C11.5 (2)
C7—C8—C9—C10172.73 (9)C6—C5—C4—C30.1 (2)
C7—N1—C1—C639.91 (16)C2—C3—C4—C51.0 (2)
C7—N1—C1—C2142.39 (11)C11—C12—C13—C142.4 (2)
C10—C9—C14—C131.97 (17)C9—C14—C13—C120.1 (2)

Experimental details

Crystal data
Chemical formulaC14H12N2O2
Mr240.26
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)10.0106 (9), 10.2280 (6), 12.1627 (7)
β (°) 95.763 (6)
V3)1239.03 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12031, 3434, 1990
Rint0.036
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 0.81
No. of reflections3434
No. of parameters212
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.11, 0.11

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, X-RED (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O2—N21.4167 (10)N1—C11.4145 (13)
O1—C81.2147 (12)C9—C141.3841 (16)
N2—C71.2897 (12)C9—C101.3866 (15)
C8—C91.4768 (14)C1—C61.3765 (16)
C8—C71.5098 (13)C1—C21.3795 (17)
C7—N11.3475 (13)C2—C31.3786 (17)
C7—N2—O2110.66 (8)N1—C7—C8119.66 (8)
O1—C8—C9122.67 (9)C7—N1—C1125.25 (9)
O1—C8—C7116.60 (9)C14—C9—C8122.40 (9)
C9—C8—C7120.70 (8)C10—C9—C8118.70 (10)
N2—C7—N1125.09 (9)C6—C1—N1121.11 (10)
N2—C7—C8114.32 (8)C2—C1—N1119.13 (10)
O2—N2—C7—C8169.51 (8)N2—C7—N1—C1169.24 (10)
O1—C8—C7—N2123.44 (10)C8—C7—N1—C122.45 (15)
C9—C8—C7—N254.57 (12)O1—C8—C9—C14173.21 (10)
O1—C8—C7—N146.09 (13)O1—C8—C9—C105.16 (15)
C9—C8—C7—N1135.90 (10)C7—N1—C1—C2142.39 (11)
Table 2. Comparison of the bond lengths (Å) and angles (°) in the oxime moiety of (I) with the corresponding values in the related compounds (II), (III) and (IV). top
(I)(II)(III)(IV)
N2-O21.4167 (10)1.4033 (16)/1.3956 (18)1.423 (3)/1.396 (3)1.429 (4)
N2-C71.2897 (12)1.2811 (18)/1.2813 (19)1.290 (3)/1.282 (3)1.241 (6)
C7-C81.5098 (13)1.477 (3)/1.473 (3)1.489 (3)1.551 (7)
C8-C7-N2114.32 (8)115.18 (15)/115.03 (17)116.59 (19)/115.0 (2)118.3 (5)
C7-N2-O2110.66 (8)112.39 (12)/112.15 (13)109.37 (18)/111.52 (19)112.2 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds