Download citation
Download citation
link to html
The isonicotinate (4-pyridyl­carboxyl­ate) ligand was used to synthesize the title compound, [Nd(C6H4NO2)3(H2O)2]. It has a one-dimensional chain structure. The Nd atom lies on a crystallographic twofold axis. The NdIII center is in an infinite chain, coordinated by four carboxyl­ate O atoms of bridging isonicotinate groups, two carboxyl­ate O atoms of the chelating isonicotinate group, and two water mol­ecules. Weak interactions between pyridine H and N atoms generate a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803009917/ww6080sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803009917/ww6080Isup2.hkl
Contains datablock I

CCDC reference: 214786

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.029
  • wR factor = 0.074
  • Data-to-parameter ratio = 10.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

There has been intent interest in the synthesis and construction of lanthanide complexes with carboxylate ligands, owing to their potential application as luminescent sensor materials in biological devices (Choppin & Bünzli, 1989). Numerous lanthanide complexes have been studied (Bünzli & Piguet, 2002). Most of them have been found to possess a variety of dimeric or infinte chain structures in which the carboxylate groups act as bridges between metal atoms (Pan et al., 2000). In this context, we have attempted to construct neutral lanthanide coordination polymers using the anionic bifunctional isonicotinate linking group, with the aim of getting a three-dimensional framework and functional solid based on molecular building blocks by both metal–ligand ligations and hydrogen-bond interactions.

We obtained the coordination polymer Nd(4-pyridylcarboxylate)3(H2O)2, (I). The compound crystallizes in the monoclinic space group P21/c. This compound has a one-dimensional infinite zigzag chain structure along the a axis direction with a double carboxylate bridge. The Nd metal center lies on a crystallographic twofold axis. On each metal center, there is a chelating carboxylate group. There are also two water molecules bound to the metal centers to yield an eight-coordinate. The Nd center coordinates to four carboxylate O atoms of bridging isonicotinate groups [O3, O4Ai, O5 and O6Aii; symmetry codes: (i) −x,-y + 1,-z; (ii) −x + 1,-y + 1,-z], two carboxylate O atoms of the chelating isonicotinate group (O1 and O2), and two water molecules (O1W and O2W). The Nd center also has a distorted dodecahedral coordination geometry, with O—Nd—O angles ranging from 50.51 (10) to 154.96 (13)° (Table 1). The distances between adjacent Nd atoms are 4.793(?) and 4.954(?)Å. There are O—H···N interactions between pyridyl N atoms and coordinated water O atoms (O1W—H1WB···N3iii and O2W—H2WB···N2iv; symmetry codes: (iii) 1 − x, −1/2 + y, −1/2 − z; (iv) x, y, −1 + z]. The interchain hydrogen bonds formed between pyridine N atoms of isonicotinate bridging groups and coordinated water molecules steer the assembly of bulk. The hydrogen-bond interactions extend the one-dimensional chains to three-dimensional framework.

Experimental top

The ligand sodium isonicotinate (4-pyridylcarboxylate) was prepared as follows: 20 mmol of isonicotinate acid and 20 mmol sodium bicarbonate were mixed together in 20 ml aqueous solvent. The mixture was stirred at room temperature. After the reaction was completed, the solution was concentrated to get the ligand compound. Single purple crystals of the title complex, (I), were grown by evaporation at room temperature. Neodymium(III) nitrate hexahydrate (1 mmol) and sodium isonicotinate (3 mmol) were mixed in water (10 ml). The solution was filtered and the filtrate was placed for about one day for crystallization.

Refinement top

All the H atoms were located in difference Fourier maps and were refined isotropically.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of compound (I), showing the atom-labelling scheme. H atoms are represented by circles of arbitrary size. Ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The infinite one-dimensional zigzag chain structure along the a axis direction. H atoms bonded to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular packing of (1) viewed along the c axis. Dashed lines indicate the hydrogen-bonding interactions. Ellipsoids are drawn at the 30% probability level.
Diaquatris(4-pyridylcarboxylato)neodymium(III) top
Crystal data top
[Nd(C6H4NO2)3(H2O)2]F(000) = 1076
Mr = 546.58Dx = 1.856 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 9.526 (2) Åθ = 2.6–26.1°
b = 19.053 (4) ŵ = 2.71 mm1
c = 10.787 (2) ÅT = 293 K
β = 92.19 (3)°Block, purple
V = 1956.4 (7) Å30.40 × 0.37 × 0.22 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
2830 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 011
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
k = 022
Tmin = 0.352, Tmax = 0.551l = 1212
3656 measured reflections3 standard reflections every 200 reflections
3441 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.6679P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
3441 reflectionsΔρmax = 0.80 e Å3
323 parametersΔρmin = 1.16 e Å3
0 restraints
Crystal data top
[Nd(C6H4NO2)3(H2O)2]V = 1956.4 (7) Å3
Mr = 546.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.526 (2) ŵ = 2.71 mm1
b = 19.053 (4) ÅT = 293 K
c = 10.787 (2) Å0.40 × 0.37 × 0.22 mm
β = 92.19 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2830 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XCAD4; Harms & Wocadlo, 1995)
Rint = 0.025
Tmin = 0.352, Tmax = 0.5513 standard reflections every 200 reflections
3656 measured reflections intensity decay: 0.0%
3441 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.80 e Å3
3441 reflectionsΔρmin = 1.16 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.25241 (2)0.51046 (2)0.04413 (2)0.01957 (9)
O10.3452 (3)0.56756 (18)0.1506 (3)0.0316 (8)
O20.1446 (3)0.61303 (16)0.0849 (3)0.0276 (7)
O30.1012 (4)0.46213 (19)0.1093 (3)0.0349 (8)
O40.0965 (3)0.44003 (19)0.2017 (3)0.0373 (9)
O50.3780 (3)0.61452 (17)0.1132 (3)0.0357 (8)
O60.5803 (3)0.57285 (17)0.0386 (3)0.0328 (8)
O1W0.1373 (3)0.40425 (17)0.1363 (3)0.0317 (8)
H1WA0.06140.38920.11760.040 (17)*
H1WB0.19190.36890.16760.034 (14)*
O2W0.3869 (4)0.47161 (19)0.2241 (3)0.0359 (8)
H2WA0.46220.45080.20610.039 (16)*
H2WB0.36000.45950.29060.05 (2)*
N10.2392 (6)0.7218 (3)0.5086 (5)0.0594 (15)
N20.2602 (5)0.4250 (3)0.5534 (4)0.0474 (12)
N30.7190 (5)0.7923 (2)0.2603 (5)0.0436 (12)
C10.2397 (5)0.6480 (3)0.2845 (5)0.0307 (11)
C20.3105 (7)0.6233 (3)0.3886 (6)0.0503 (16)
H20.356 (6)0.578 (3)0.379 (5)0.055 (18)*
C30.3052 (9)0.6607 (4)0.4979 (6)0.066 (2)
H30.350 (7)0.638 (3)0.569 (6)0.06 (2)*
C40.1732 (6)0.7461 (3)0.4061 (6)0.0454 (15)
H40.142 (6)0.788 (3)0.410 (5)0.049 (18)*
C50.1671 (6)0.7108 (3)0.2944 (5)0.0344 (12)
H50.129 (5)0.730 (3)0.235 (5)0.026 (15)*
C60.2430 (5)0.6081 (2)0.1653 (4)0.0260 (10)
C70.1137 (5)0.4339 (2)0.3240 (4)0.0259 (10)
C80.2597 (6)0.4396 (3)0.3340 (5)0.0356 (13)
H80.315 (6)0.448 (3)0.282 (5)0.037 (16)*
C90.3263 (6)0.4345 (3)0.4484 (5)0.0429 (14)
H90.431 (7)0.439 (3)0.454 (6)0.062 (19)*
C100.1204 (7)0.4175 (4)0.5430 (5)0.0531 (17)
H100.077 (7)0.411 (3)0.615 (6)0.06 (2)*
C110.0429 (6)0.4220 (3)0.4305 (5)0.0434 (14)
H110.063 (6)0.419 (3)0.430 (5)0.044 (15)*
C120.0344 (5)0.4458 (2)0.2028 (4)0.0231 (10)
C130.5088 (5)0.6182 (2)0.0950 (4)0.0255 (10)
C140.5812 (5)0.6813 (2)0.1492 (4)0.0239 (10)
C150.5129 (5)0.7233 (3)0.2358 (5)0.0303 (11)
H150.423 (6)0.718 (3)0.261 (5)0.041 (16)*
C160.7194 (5)0.6963 (3)0.1179 (6)0.0381 (13)
H160.763 (6)0.672 (3)0.065 (5)0.043 (17)*
C170.7824 (6)0.7517 (3)0.1756 (7)0.0507 (17)
H170.858 (6)0.765 (3)0.147 (5)0.046 (18)*
C180.5864 (6)0.7779 (3)0.2883 (5)0.0389 (13)
H180.541 (5)0.796 (3)0.350 (5)0.031 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01718 (14)0.02338 (14)0.01805 (14)0.00097 (10)0.00064 (9)0.00036 (10)
O10.0171 (17)0.045 (2)0.0328 (19)0.0040 (15)0.0032 (14)0.0111 (15)
O20.0201 (17)0.0347 (18)0.0277 (18)0.0015 (14)0.0025 (14)0.0049 (14)
O30.037 (2)0.045 (2)0.0227 (18)0.0063 (16)0.0000 (16)0.0069 (15)
O40.0177 (18)0.057 (2)0.036 (2)0.0001 (16)0.0075 (15)0.0070 (17)
O50.0236 (19)0.0344 (19)0.049 (2)0.0072 (14)0.0002 (17)0.0101 (16)
O60.0319 (19)0.0305 (19)0.036 (2)0.0044 (15)0.0031 (16)0.0100 (15)
O1W0.0189 (18)0.0320 (19)0.045 (2)0.0037 (14)0.0083 (15)0.0150 (16)
O2W0.0221 (18)0.062 (2)0.0230 (19)0.0042 (17)0.0021 (15)0.0084 (17)
N10.070 (4)0.068 (4)0.041 (3)0.005 (3)0.000 (3)0.022 (3)
N20.051 (3)0.061 (3)0.029 (3)0.009 (2)0.015 (2)0.003 (2)
N30.045 (3)0.030 (2)0.057 (3)0.005 (2)0.011 (2)0.012 (2)
C10.023 (3)0.039 (3)0.030 (3)0.007 (2)0.006 (2)0.008 (2)
C20.059 (4)0.055 (4)0.036 (3)0.012 (3)0.008 (3)0.014 (3)
C30.084 (5)0.069 (5)0.042 (4)0.019 (4)0.015 (4)0.016 (3)
C40.038 (3)0.040 (3)0.058 (4)0.003 (3)0.007 (3)0.019 (3)
C50.025 (3)0.042 (3)0.037 (3)0.004 (2)0.002 (2)0.008 (3)
C60.020 (2)0.028 (2)0.030 (3)0.010 (2)0.004 (2)0.006 (2)
C70.021 (2)0.032 (3)0.025 (3)0.0014 (19)0.004 (2)0.000 (2)
C80.025 (3)0.048 (3)0.034 (3)0.001 (2)0.004 (2)0.001 (2)
C90.026 (3)0.059 (4)0.042 (4)0.004 (3)0.013 (3)0.001 (3)
C100.047 (4)0.089 (5)0.023 (3)0.003 (3)0.003 (3)0.014 (3)
C110.028 (3)0.073 (4)0.030 (3)0.001 (3)0.000 (2)0.012 (3)
C120.027 (3)0.021 (2)0.021 (2)0.0000 (18)0.000 (2)0.0031 (18)
C130.024 (3)0.025 (2)0.028 (3)0.0012 (19)0.005 (2)0.0004 (19)
C140.020 (2)0.023 (2)0.030 (3)0.0001 (18)0.004 (2)0.0005 (19)
C150.023 (3)0.031 (3)0.037 (3)0.001 (2)0.001 (2)0.005 (2)
C160.024 (3)0.037 (3)0.052 (4)0.007 (2)0.008 (3)0.019 (3)
C170.026 (3)0.051 (4)0.074 (5)0.015 (3)0.006 (3)0.011 (3)
C180.037 (3)0.041 (3)0.039 (3)0.005 (2)0.001 (3)0.010 (3)
Geometric parameters (Å, º) top
Nd1—O6i2.397 (3)C1—C21.370 (8)
Nd1—O4ii2.406 (3)C1—C51.388 (7)
Nd1—O32.417 (3)C1—C61.495 (6)
Nd1—O52.446 (3)C2—C31.381 (8)
Nd1—O2W2.480 (3)C2—H20.98 (6)
Nd1—O1W2.490 (3)C3—H30.97 (6)
Nd1—O12.497 (3)C4—C51.380 (8)
Nd1—O22.631 (3)C4—H40.85 (6)
Nd1—C62.931 (5)C5—H50.81 (5)
O1—C61.259 (5)C7—C111.373 (7)
O2—C61.255 (5)C7—C81.395 (7)
O3—C121.252 (5)C7—C121.502 (6)
O4—C121.252 (5)C8—C91.369 (8)
O4—Nd1ii2.406 (3)C8—H80.80 (5)
O5—C131.256 (6)C9—H91.00 (7)
O6—C131.245 (5)C10—C111.399 (8)
O6—Nd1i2.397 (3)C10—H100.90 (6)
O1W—H1WA0.8108C11—H111.02 (6)
O1W—H1WB0.9232C13—C141.513 (6)
O2W—H2WA0.8358C14—C151.375 (7)
O2W—H2WB0.7865C14—C161.377 (7)
N1—C31.329 (9)C15—C181.388 (7)
N1—C41.334 (8)C15—H150.89 (6)
N2—C91.330 (7)C16—C171.375 (8)
N2—C101.340 (8)C16—H160.83 (5)
N3—C181.316 (7)C17—H170.81 (6)
N3—C171.324 (8)C18—H180.86 (5)
O6i—Nd1—O4ii154.96 (13)C1—C2—C3119.3 (6)
O6i—Nd1—O384.14 (12)C1—C2—H2115 (3)
O4ii—Nd1—O3105.38 (12)C3—C2—H2126 (4)
O6i—Nd1—O5108.91 (11)N1—C3—C2124.0 (7)
O4ii—Nd1—O576.28 (12)N1—C3—H3122 (4)
O3—Nd1—O5145.91 (12)C2—C3—H3114 (4)
O6i—Nd1—O2W74.80 (12)N1—C4—C5123.8 (6)
O4ii—Nd1—O2W83.53 (12)N1—C4—H4116 (4)
O3—Nd1—O2W139.60 (13)C5—C4—H4119 (4)
O5—Nd1—O2W74.35 (12)C4—C5—C1118.9 (6)
O6i—Nd1—O1W83.51 (12)C4—C5—H5118 (4)
O4ii—Nd1—O1W77.66 (12)C1—C5—H5123 (4)
O3—Nd1—O1W72.48 (11)O2—C6—O1121.3 (4)
O5—Nd1—O1W138.59 (12)O2—C6—C1121.1 (4)
O2W—Nd1—O1W71.20 (11)O1—C6—C1117.5 (4)
O6i—Nd1—O176.49 (11)O2—C6—Nd163.8 (2)
O4ii—Nd1—O1127.76 (12)O1—C6—Nd157.7 (2)
O3—Nd1—O177.94 (11)C1—C6—Nd1171.1 (3)
O5—Nd1—O175.01 (12)C11—C7—C8117.9 (5)
O2W—Nd1—O1127.71 (11)C11—C7—C12120.4 (4)
O1W—Nd1—O1145.70 (12)C8—C7—C12121.5 (4)
O6i—Nd1—O2124.21 (11)C9—C8—C7119.4 (5)
O4ii—Nd1—O280.78 (11)C9—C8—H8110 (4)
O3—Nd1—O270.48 (11)C7—C8—H8130 (4)
O5—Nd1—O276.36 (11)N2—C9—C8124.0 (5)
O2W—Nd1—O2149.30 (11)N2—C9—H9118 (4)
O1W—Nd1—O2129.80 (10)C8—C9—H9118 (4)
O1—Nd1—O250.51 (10)N2—C10—C11123.8 (6)
O6i—Nd1—C699.97 (13)N2—C10—H10115 (4)
O4ii—Nd1—C6105.02 (13)C11—C10—H10121 (4)
O3—Nd1—C671.18 (12)C7—C11—C10118.4 (5)
O5—Nd1—C675.51 (12)C7—C11—H11122 (3)
O2W—Nd1—C6145.59 (12)C10—C11—H11120 (3)
O1W—Nd1—C6142.89 (12)O4—C12—O3123.4 (4)
O1—Nd1—C625.23 (11)O4—C12—C7117.6 (4)
O2—Nd1—C625.35 (11)O3—C12—C7118.9 (4)
C6—O1—Nd197.1 (3)O6—C13—O5123.9 (4)
C6—O2—Nd190.8 (3)O6—C13—C14119.4 (4)
C12—O3—Nd1168.7 (3)O5—C13—C14116.6 (4)
C12—O4—Nd1ii124.1 (3)C15—C14—C16117.9 (4)
C13—O5—Nd1119.5 (3)C15—C14—C13120.9 (4)
C13—O6—Nd1i170.1 (3)C16—C14—C13121.1 (4)
Nd1—O1W—H1WA124.9C14—C15—C18118.7 (5)
Nd1—O1W—H1WB119.6C14—C15—H15124 (3)
H1WA—O1W—H1WB110.6C18—C15—H15117 (4)
Nd1—O2W—H2WA115.1C17—C16—C14118.6 (5)
Nd1—O2W—H2WB129.9C17—C16—H16121 (4)
H2WA—O2W—H2WB108.7C14—C16—H16120 (4)
C3—N1—C4116.2 (5)N3—C17—C16124.4 (6)
C9—N2—C10116.4 (5)N3—C17—H17117 (4)
C18—N3—C17116.4 (5)C16—C17—H17118 (4)
C2—C1—C5117.7 (5)N3—C18—C15123.9 (5)
C2—C1—C6120.3 (5)N3—C18—H18124 (4)
C5—C1—C6122.0 (5)C15—C18—H18112 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.812.012.782 (4)160
O1W—H1WB···N3iii0.921.872.791 (5)173
O2W—H2WA···O1i0.841.942.746 (5)162
O2W—H2WB···N2iv0.792.012.790 (6)170
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y1/2, z1/2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Nd(C6H4NO2)3(H2O)2]
Mr546.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.526 (2), 19.053 (4), 10.787 (2)
β (°) 92.19 (3)
V3)1956.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.40 × 0.37 × 0.22
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(XCAD4; Harms & Wocadlo, 1995)
Tmin, Tmax0.352, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
3656, 3441, 2830
Rint0.025
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections3441
No. of parameters323
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 1.16

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Nd1—O6i2.397 (3)Nd1—O2W2.480 (3)
Nd1—O4ii2.406 (3)Nd1—O1W2.490 (3)
Nd1—O32.417 (3)Nd1—O12.497 (3)
Nd1—O52.446 (3)Nd1—O22.631 (3)
O6i—Nd1—O4ii154.96 (13)O2—C6—C1121.1 (4)
O6i—Nd1—O384.14 (12)O1—C6—C1117.5 (4)
O4ii—Nd1—O3105.38 (12)O4—C12—O3123.4 (4)
O6i—Nd1—O5108.91 (11)O4—C12—C7117.6 (4)
O4ii—Nd1—O576.28 (12)O3—C12—C7118.9 (4)
O3—Nd1—O5145.91 (12)O6—C13—O5123.9 (4)
O2W—Nd1—O1W71.20 (11)O6—C13—C14119.4 (4)
O1—Nd1—O250.51 (10)O5—C13—C14116.6 (4)
O2—C6—O1121.3 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.812.012.782 (4)160
O1W—H1WB···N3iii0.921.872.791 (5)173
O2W—H2WA···O1i0.841.942.746 (5)162
O2W—H2WB···N2iv0.792.012.790 (6)170
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y1/2, z1/2; (iv) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds