Download citation
Download citation
link to html
The mol­ecule of the title compound, [Sn(CH3)2(C8H14NS2)2], occupies a special position on a crystallographic mirror plane which coincides with the plane of the di­methyl­tin group. The severely distorted coordination tetrahedron formed by the four strong bonds of the Sn atom [Sn—C = 2.101 (4) and 2.108 (5) Å, Sn—S = 2.5169 (7) Å, C—Sn—C = 137.0 (2)° and S—Sn—S = 84.46 (3)°] is expanded to a distorted octahedron due to weak intramolecular Sn...S interactions of 2.9785 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803010420/ya6155sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803010420/ya6155Isup2.hkl
Contains datablock I

CCDC reference: 214784

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.081
  • Data-to-parameter ratio = 23.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The comparison of the geometry of numerous bis(dithiocarbamato)dimethyltin and bis(dithiocarbamato)diphenyltin complexes reveals interesting differences between dimethyltin and diphenyltin derivatives. It turns out that dimethyltin complexes show in most cases substantially larger C—Sn—C angles than their diphenyltin analogues [e.g. 136.0 (1)° in Me2Sn(S2CNMe2)2 (Kimura at al., 1972) and 101.4 (6)° in Ph2Sn(S2CNEt2)2 (Lindley & Carr, 1974)]. Furthermore, in diphenyltin complexes, one of the ligands usually chelates the Sn atom symmetrically, whereas the other ligand shows a considerable difference in the Sn—S bond distances. On the contrary, in dimethyltin complexes, both ligands display the same coordination pattern with one shorter Sn—S bond and one longer Sn···S `secondary' contact.

The geometry of the title compound, (I), is typical for the bis(dithiocarbamato)dimethyltin complexes and illustrates the features outlined above. As well as its analogue, bis[N,N-bis(2-hydroxyethyl)dithiocarbamato]dimethyltin(IV) (Farina et al., 2000), molecule (I) has a crystallographic mirror plane, coinciding with the C9/Sn1/C10 plane. The severely distorted coordination tetrahedron formed by the four strong bonds of the Sn atom [Sn1—C9 = 2.101 (4), Sn1—C10 = 2.108 (5) and Sn1—S1 = 2.5169 (7) Å; C9—Sn1—C10 = 137.0 (2)° and S1—Sn1—S1i = 84.46 (3)°; symmetry code: (i) x, 1.5 − y, z] is promoted to a distorted octahedron due to weak intramolecular Sn1···S2 interactions of 2.9785 (6) Å, the S2—Sn1—S2i angle being 146.35 (2)°

The Sn1 atom shows very small displacement from the plane of the coordinating atoms S1, S2, S1A and S2A [0.0048 (8) Å]; the four-membered chelate ring is almost planar and the torsion angle Sn1—S1—C8—S2 is −6.89 (15)°.

Experimental top

To a solution of N-methylcyclohexylamine (3.9 ml, 0.04 mol) in ethanol was added with stirring at 273 K, carbon disulfide (1.8 ml, 0.03 mol). After stirring for 2 h, 3.295 g (0.015 mol) of dimethyltin(IV) chloride (10.00 ml) was added dropwise to the mixture. The mixture was then stirred vigorously for 1 h. The white solid obtained was recrystallized from chloroform.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms, with C—H = 0.93–0.97 Å. However, the H atoms at C9 and C10 were located and refined f reely and then fixed.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids
Bis(N-cyclohexyl-N-methyldithiocarbamato)dimethyltin(IV) top
Crystal data top
[Sn(CH3)2(C8H14NS2)2]Dx = 1.480 Mg m3
Mr = 525.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4467 reflections
a = 13.2000 (9) Åθ = 2.0–27.6°
b = 19.9650 (14) ŵ = 1.44 mm1
c = 8.9503 (6) ÅT = 293 K
V = 2358.7 (3) Å3Block, light yellow
Z = 40.27 × 0.22 × 0.16 mm
F(000) = 1080
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2795 independent reflections
Radiation source: fine-focus sealed tube2441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 83.66 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2525
Tmin = 0.696, Tmax = 0.802l = 1111
15359 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.8626P]
where P = (Fo2 + 2Fc2)/3
2795 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Sn(CH3)2(C8H14NS2)2]V = 2358.7 (3) Å3
Mr = 525.40Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.2000 (9) ŵ = 1.44 mm1
b = 19.9650 (14) ÅT = 293 K
c = 8.9503 (6) Å0.27 × 0.22 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2795 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2441 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.802Rint = 0.029
15359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06Δρmax = 0.74 e Å3
2795 reflectionsΔρmin = 0.33 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.356754 (18)0.75000.16669 (3)0.04299 (10)
S10.22144 (5)0.66527 (3)0.22612 (8)0.04575 (17)
S20.41923 (5)0.60720 (3)0.13864 (11)0.0616 (2)
C10.2710 (2)0.41283 (13)0.1818 (3)0.0519 (7)
H1A0.23890.42100.08600.062*
H1B0.21850.40190.25370.062*
C20.3452 (3)0.35471 (15)0.1684 (3)0.0633 (9)
H2A0.30870.31450.13970.076*
H2B0.39420.36450.09070.076*
C30.4003 (3)0.34241 (14)0.3147 (4)0.0635 (8)
H3A0.35200.32720.38910.076*
H3B0.45000.30720.30050.076*
C40.4525 (2)0.40427 (14)0.3711 (4)0.0648 (8)
H4A0.50780.41560.30440.078*
H4B0.48090.39540.46910.078*
C50.3799 (2)0.46317 (13)0.3812 (3)0.0495 (6)
H5A0.32930.45420.45720.059*
H5B0.41700.50310.41020.059*
C60.32787 (19)0.47514 (11)0.2323 (3)0.0398 (5)
H6A0.38090.48390.15820.048*
C70.16135 (19)0.52808 (14)0.3003 (3)0.0487 (6)
H7A0.12740.57060.29900.073*
H7B0.16520.51190.40110.073*
H7C0.12430.49670.24030.073*
C80.30031 (18)0.59560 (11)0.2045 (3)0.0383 (5)
C90.4502 (4)0.75000.3566 (6)0.0846 (17)
H9A0.43130.71630.40300.102*
H9B0.50740.75000.33110.102*
C100.3764 (4)0.75000.0670 (5)0.0687 (12)
H10B0.35810.78500.10740.082*
H10A0.44250.75000.06500.082*
N10.26326 (14)0.53576 (9)0.2403 (2)0.0384 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03687 (15)0.03148 (14)0.06062 (18)0.0000.00282 (10)0.000
S10.0385 (3)0.0294 (3)0.0693 (4)0.0033 (2)0.0024 (3)0.0010 (3)
S20.0381 (4)0.0323 (3)0.1143 (7)0.0004 (3)0.0151 (4)0.0088 (3)
C10.0631 (18)0.0335 (13)0.0591 (16)0.0064 (12)0.0017 (13)0.0044 (11)
C20.090 (2)0.0293 (13)0.071 (2)0.0016 (14)0.0077 (16)0.0055 (12)
C30.079 (2)0.0346 (14)0.077 (2)0.0067 (14)0.0101 (16)0.0076 (13)
C40.0639 (19)0.0416 (15)0.089 (2)0.0090 (14)0.0074 (16)0.0124 (14)
C50.0532 (15)0.0344 (13)0.0609 (16)0.0030 (11)0.0069 (13)0.0009 (11)
C60.0446 (13)0.0260 (10)0.0486 (13)0.0001 (10)0.0052 (11)0.0013 (10)
C70.0426 (14)0.0405 (13)0.0629 (17)0.0029 (11)0.0100 (12)0.0020 (12)
C80.0351 (12)0.0291 (11)0.0507 (13)0.0005 (9)0.0034 (10)0.0010 (9)
C90.081 (4)0.059 (3)0.114 (4)0.0000.047 (3)0.000
C100.084 (3)0.051 (2)0.071 (3)0.0000.018 (2)0.000
N10.0350 (10)0.0296 (9)0.0508 (12)0.0006 (8)0.0014 (8)0.0010 (8)
Geometric parameters (Å, º) top
Sn1—S12.5169 (7)C4—C51.520 (4)
Sn1—S22.9785 (6)C4—H4A0.9700
Sn1—C92.101 (4)C4—H4B0.9700
Sn1—C102.108 (5)C5—C61.518 (4)
Sn1—S1i2.5169 (6)C5—H5A0.9700
S1—C81.748 (2)C5—H5B0.9700
S2—C81.693 (3)C6—N11.482 (3)
C1—C61.522 (3)C6—H6A0.9800
C1—C21.524 (4)C7—N11.457 (3)
C1—H1A0.9700C7—H7A0.9600
C1—H1B0.9700C7—H7B0.9600
C2—C31.518 (4)C7—H7C0.9600
C2—H2A0.9700C8—N11.330 (3)
C2—H2B0.9700C9—H9A0.8294
C3—C41.502 (4)C9—H9B0.7880
C3—H3A0.9700C10—H10B0.8231
C3—H3B0.9700C10—H10A0.8727
S1—Sn1—S1i84.46 (3)H4A—C4—H4B108.0
S2—Sn1—S2i146.35 (2)C6—C5—C4110.8 (2)
C9—Sn1—C10137.0 (2)C6—C5—H5A109.5
C9—Sn1—S1104.23 (13)C4—C5—H5A109.5
C10—Sn1—S1107.28 (10)C6—C5—H5B109.5
C9—Sn1—S1i104.23 (13)C4—C5—H5B109.5
C10—Sn1—S1i107.28 (10)H5A—C5—H5B108.1
C8—S1—Sn195.09 (8)N1—C6—C5110.3 (2)
C6—C1—C2109.2 (2)N1—C6—C1113.4 (2)
C6—C1—H1A109.8C5—C6—C1110.8 (2)
C2—C1—H1A109.8N1—C6—H6A107.3
C6—C1—H1B109.8C5—C6—H6A107.3
C2—C1—H1B109.8C1—C6—H6A107.3
H1A—C1—H1B108.3N1—C7—H7A109.5
C3—C2—C1111.3 (2)N1—C7—H7B109.5
C3—C2—H2A109.4H7A—C7—H7B109.5
C1—C2—H2A109.4N1—C7—H7C109.5
C3—C2—H2B109.4H7A—C7—H7C109.5
C1—C2—H2B109.4H7B—C7—H7C109.5
H2A—C2—H2B108.0N1—C8—S2123.21 (18)
C4—C3—C2112.1 (2)N1—C8—S1117.98 (18)
C4—C3—H3A109.2S2—C8—S1118.81 (13)
C2—C3—H3A109.2Sn1—C9—H9A103.2
C4—C3—H3B109.2Sn1—C9—H9B109.1
C2—C3—H3B109.2H9A—C9—H9B115.7
H3A—C3—H3B107.9Sn1—C10—H10B113.6
C3—C4—C5111.5 (3)Sn1—C10—H10A95.9
C3—C4—H4A109.3H10B—C10—H10A107.6
C5—C4—H4A109.3C8—N1—C7121.5 (2)
C3—C4—H4B109.3C8—N1—C6120.68 (19)
C5—C4—H4B109.3C7—N1—C6117.60 (19)
C9—Sn1—S1—C873.01 (15)Sn1—S1—C8—N1173.42 (18)
C10—Sn1—S1—C877.28 (14)Sn1—S1—C8—S26.89 (15)
S1i—Sn1—S1—C8176.32 (8)S2—C8—N1—C7178.4 (2)
C6—C1—C2—C357.0 (3)S1—C8—N1—C71.9 (3)
C1—C2—C3—C455.1 (4)S2—C8—N1—C63.6 (3)
C2—C3—C4—C553.4 (4)S1—C8—N1—C6176.72 (17)
C3—C4—C5—C654.6 (3)C5—C6—N1—C890.7 (3)
C4—C5—C6—N1175.7 (2)C1—C6—N1—C8144.4 (2)
C4—C5—C6—C157.8 (3)C5—C6—N1—C784.3 (3)
C2—C1—C6—N1176.6 (2)C1—C6—N1—C740.7 (3)
C2—C1—C6—C558.7 (3)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C8H14NS2)2]
Mr525.40
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)13.2000 (9), 19.9650 (14), 8.9503 (6)
V3)2358.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.27 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.696, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
15359, 2795, 2441
Rint0.029
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.06
No. of reflections2795
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.33

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Sn1—S12.5169 (7)S2—C81.693 (3)
Sn1—S22.9785 (6)C6—N11.482 (3)
Sn1—C92.101 (4)C7—N11.457 (3)
Sn1—C102.108 (5)C8—N11.330 (3)
S1—C81.748 (2)
S1—Sn1—S1i84.46 (3)C10—Sn1—S1107.28 (10)
S2—Sn1—S2i146.35 (2)C8—S1—Sn195.09 (8)
C9—Sn1—C10137.0 (2)S2—C8—S1118.81 (13)
C9—Sn1—S1104.23 (13)
Symmetry code: (i) x, y+3/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds