Download citation
Download citation
link to html
In the title co-crystal, 2C14H10O4·C10H8N2, the diphenic acid mol­ecules form a centrosymmetric dimeric pair, through strong O—H...O hydrogen bonds involving a carboxyl­ic acid group from each mol­ecule. In the crystal structure, the dimers are linked by C—H...O interactions to form layers parallel to the (001) plane. The adjacent layers are interlinked by bi­pyridine mol­ecules, C10H8N2, through O—H...N hydrogen bonds. The bipyridine molecule lies on a centre of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012194/ci6221sup1.cif
Contains datablocks I, wong941_Wai_008_4_Nov_2000

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012194/ci6221Isup2.hkl
Contains datablock I

CCDC reference: 217451

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.054
  • Data-to-parameter ratio = 12.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The binding properties of the carboxyl groups of benzoic acid and its derivatives are interesting themes of structural chemistry (Lam et al., 2003). The diphenic acid (biphenyl-2,2'-dicarboxylic acid) is an extremely versatile building block for the purposes of crystal engineering. In the crystal structure of this compound, molecules form infinite chains, via R22(8) carboxylic acid pairs (Fronczek et al., 1987). The co-crystal structure of diphenic acid, diphenic acid-acridine (1/1) has been reported (Shaameri et al., 2001). Herein, we report the co-crystal structure of diphenic acid-4,4'-bipyridine (2/1), (I), which comprises two acid and one base molecule.

The asymmetric unit of (I) consists of one molecule of diphenic acid and a half molecule of 4,4'-bipyridine. The other diphenic acid molecule and the other half of the bipyridine molecule are generated by the symmetry operations (2 − x, 1 − y, −z) and (1 − x, 2 − y, 1 − z), respectively. In the diphenic acid, one of the carboxylic acid group shows normal C—O distances [O1—C1 = 1.321 (3) and O2—C1 = 1.197 (3) Å], while in the other these distances are nearly equal [C14—O3 = 1.272 (2) and C14—O4 = 1.256 (2) Å] indicating that it exists as COO ion. However, no proton transfer from this carboxylic acid group to a N atom of the bipyridine is observed. Instead, the H+ ion is located at a distance of 1.33 (4) Å from O3 and 1.29 (4) Å from O4i indicating the formation of centrosymmetric diphenic acid dimer through strong O—H···O hydrogen bonds (Table 2). The dimers are linked through C4—H4···O2iii and C6—H6···O3iv interactions to form molecular layers parallel to the (0 0 1) plane. The adjacent layers are interlinked by the bipyridine molecules through O1—H1···N1ii hydrogen bonds. The symmetry codes are given in Table 2.

Experimental top

Diphenic acid and 4,4'-bipyridine were obtained from Aldrich. Equimolar quantities of diphenic acid (27 mg) and 4,4'-bipyridine (15 mg) were dissolved in 15 ml of ethanol. The resulting solution was then set aside to crystallize at room temperature.

Refinement top

The C-bound H atoms were placed at their geometrically calculated positions, with C—H = 0.95 Å and in the riding model with Uiso(H) = 1.2Ueq(C). Attempts to place H2 at the calculated position resulted in a non-planar R22(8) ring formation, with an O—H···O angle of 133°. Hence, H1 and H2 were located from a difference Fourier map and both positional and isotropic displacement parameters were refined. H2 is involved in nearly symmetrical O—H···O hydrogen bonds with O···H distances of 1.33 (4) and 1.29 (4) Å, respectively.

Computing details top

Data collection: AFC Diffractometer Control (Molecular Structure Corporation, 1992); cell refinement: AFC Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme for one asymmetric unit. The other diphenic acid molecule and the other half of the bipyridine molecule are generated by the crystallographic inversion centres.
[Figure 2] Fig. 2. Molecular packing of (I), viewed down the a axis.
(I) top
Crystal data top
C28H20O8·C10H8N2Z = 1
Mr = 640.62F(000) = 334.00
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 6.498 (2) ÅCell parameters from 25 reflections
b = 8.002 (7) Åθ = 13.2–16.3°
c = 16.208 (6) ŵ = 0.09 mm1
α = 99.45 (5)°T = 298 K
β = 100.93 (3)°Block, colourless
γ = 98.42 (5)°0.44 × 0.32 × 0.28 mm
V = 802.4 (8) Å3
Data collection top
AFC7R
diffractometer
1448 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω/2–θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.957, Tmax = 0.996l = 1918
3049 measured reflections3 standard reflections every 250 reflections
2830 independent reflections intensity decay: 0.9%
Refinement top
Refinement on F0 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036Weighting scheme based on measured s.u.'s w = 1/[(σ)2(Fo) + 0.00016(Fo)2]
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.31Δρmax = 0.30 e Å3
2830 reflectionsΔρmin = 0.27 e Å3
225 parameters
Crystal data top
C28H20O8·C10H8N2γ = 98.42 (5)°
Mr = 640.62V = 802.4 (8) Å3
Triclinic, P1Z = 1
a = 6.498 (2) ÅMo Kα radiation
b = 8.002 (7) ŵ = 0.09 mm1
c = 16.208 (6) ÅT = 298 K
α = 99.45 (5)°0.44 × 0.32 × 0.28 mm
β = 100.93 (3)°
Data collection top
AFC7R
diffractometer
1448 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.957, Tmax = 0.9963 standard reflections every 250 reflections
3049 measured reflections intensity decay: 0.9%
2830 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.31Δρmax = 0.30 e Å3
2830 reflectionsΔρmin = 0.27 e Å3
225 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1226 (3)0.6029 (2)0.3652 (1)0.0703 (6)
O20.8605 (3)0.4039 (2)0.2836 (1)0.0895 (7)
O30.8094 (3)0.3251 (2)0.0025 (1)0.0666 (6)
O40.8892 (3)0.5837 (2)0.0816 (1)0.0651 (6)
N10.7048 (4)0.6498 (3)0.5733 (1)0.0713 (8)
C10.9452 (4)0.5522 (3)0.3054 (1)0.0495 (7)
C20.8630 (3)0.6970 (3)0.2711 (1)0.0431 (6)
C30.9730 (4)0.8641 (3)0.3042 (1)0.0557 (7)
C40.8981 (4)1.0036 (3)0.2778 (2)0.0650 (8)
C50.7092 (5)0.9766 (3)0.2186 (2)0.0663 (9)
C60.5989 (4)0.8119 (3)0.1844 (1)0.0566 (7)
C70.6748 (3)0.6686 (3)0.2078 (1)0.0430 (6)
C80.5456 (3)0.4946 (3)0.1649 (1)0.0449 (6)
C90.3618 (4)0.4401 (3)0.1923 (1)0.0579 (8)
C100.2305 (4)0.2831 (4)0.1550 (2)0.0671 (9)
C110.2781 (4)0.1768 (3)0.0886 (2)0.0658 (8)
C120.4556 (4)0.2291 (3)0.0586 (1)0.0558 (7)
C130.5910 (3)0.3871 (3)0.0953 (1)0.0439 (6)
C140.7746 (3)0.4365 (3)0.0564 (1)0.0455 (7)
C150.5568 (5)0.7174 (4)0.6042 (2)0.083 (1)
C160.4722 (4)0.8523 (4)0.5777 (2)0.079 (1)
C170.5414 (4)0.9248 (3)0.5146 (1)0.0539 (7)
C180.6927 (5)0.8521 (4)0.4809 (2)0.083 (1)
C190.7694 (5)0.7169 (4)0.5118 (2)0.086 (1)
H11.177 (5)0.499 (4)0.388 (2)0.13 (1)
H20.973 (6)0.369 (4)0.038 (2)0.16 (1)
H31.10260.88290.34590.0669
H40.97641.11710.30050.0780
H50.65441.07210.20110.0795
H60.46780.79550.14380.0679
H70.32530.51240.23790.0695
H80.10650.24860.17550.0806
H90.18900.06820.06370.0789
H100.48720.15640.01180.0669
H110.50430.66990.64790.1002
H120.36550.89550.60320.0953
H130.74540.89470.43610.0995
H140.87490.66970.48720.1037
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.072 (1)0.058 (1)0.071 (1)0.0196 (9)0.0139 (9)0.0136 (9)
O20.092 (1)0.041 (1)0.115 (2)0.0108 (10)0.028 (1)0.020 (1)
O30.064 (1)0.066 (1)0.063 (1)0.0035 (9)0.0230 (9)0.0095 (9)
O40.070 (1)0.052 (1)0.070 (1)0.0044 (9)0.0312 (9)0.0003 (9)
N10.074 (2)0.074 (2)0.067 (1)0.028 (1)0.001 (1)0.021 (1)
C10.056 (1)0.043 (1)0.050 (1)0.017 (1)0.009 (1)0.010 (1)
C20.051 (1)0.040 (1)0.040 (1)0.012 (1)0.013 (1)0.0083 (10)
C30.064 (2)0.045 (1)0.054 (1)0.008 (1)0.006 (1)0.009 (1)
C40.088 (2)0.039 (1)0.064 (2)0.006 (1)0.010 (1)0.008 (1)
C50.093 (2)0.043 (1)0.068 (2)0.023 (1)0.012 (2)0.020 (1)
C60.067 (2)0.052 (1)0.052 (1)0.022 (1)0.005 (1)0.014 (1)
C70.050 (1)0.041 (1)0.041 (1)0.012 (1)0.014 (1)0.0094 (10)
C80.046 (1)0.047 (1)0.045 (1)0.013 (1)0.008 (1)0.018 (1)
C90.054 (2)0.066 (2)0.057 (1)0.012 (1)0.018 (1)0.016 (1)
C100.053 (2)0.077 (2)0.073 (2)0.000 (1)0.014 (1)0.030 (2)
C110.059 (2)0.059 (2)0.070 (2)0.007 (1)0.002 (1)0.016 (1)
C120.057 (2)0.049 (1)0.056 (1)0.005 (1)0.005 (1)0.008 (1)
C130.044 (1)0.044 (1)0.042 (1)0.010 (1)0.004 (1)0.0094 (10)
C140.047 (1)0.045 (1)0.041 (1)0.010 (1)0.004 (1)0.005 (1)
C150.088 (2)0.107 (2)0.074 (2)0.037 (2)0.020 (2)0.050 (2)
C160.075 (2)0.105 (2)0.081 (2)0.044 (2)0.029 (2)0.047 (2)
C170.053 (1)0.064 (2)0.044 (1)0.015 (1)0.002 (1)0.013 (1)
C180.110 (2)0.093 (2)0.074 (2)0.054 (2)0.044 (2)0.036 (2)
C190.106 (2)0.089 (2)0.084 (2)0.051 (2)0.035 (2)0.025 (2)
Geometric parameters (Å, º) top
O1—C11.321 (3)C8—C91.389 (3)
O1—H11.04 (3)C8—C131.408 (3)
O2—C11.197 (3)C9—C101.383 (3)
O3—C141.272 (2)C9—H70.95
O3—H21.33 (4)C10—C111.370 (4)
O4—C141.256 (2)C10—H80.95
N1—C151.309 (3)C11—C121.372 (3)
N1—C191.313 (3)C11—H90.95
C1—C21.489 (3)C12—C131.399 (3)
C2—C31.388 (3)C12—H100.95
C2—C71.402 (3)C13—C141.486 (3)
C3—C41.379 (3)C15—C161.375 (4)
C3—H30.95C15—H110.95
C4—C51.372 (3)C16—C171.370 (3)
C4—H40.95C16—H120.95
C5—C61.375 (3)C17—C17i1.497 (4)
C5—H50.95C17—C181.368 (3)
C6—C71.393 (3)C18—C191.382 (4)
C6—H60.95C18—H130.95
C7—C81.498 (3)C19—H140.95
C1—O1—H1111 (1)C9—C10—C11120.5 (2)
C14—O3—H2117 (1)C9—C10—H8119.7
C15—N1—C19115.8 (2)C11—C10—H8119.8
O1—C1—O2121.9 (2)C10—C11—C12119.3 (2)
O1—C1—C2113.2 (2)C10—C11—H9120.4
O2—C1—C2124.9 (2)C12—C11—H9120.4
C1—C2—C3119.0 (2)C11—C12—C13121.3 (2)
C1—C2—C7121.5 (2)C11—C12—H10119.3
C3—C2—C7119.4 (2)C13—C12—H10119.3
C2—C3—C4121.4 (2)C8—C13—C12119.6 (2)
C2—C3—H3119.3C8—C13—C14122.7 (2)
C4—C3—H3119.3C12—C13—C14117.7 (2)
C3—C4—C5119.2 (2)O3—C14—O4122.2 (2)
C3—C4—H4120.4O3—C14—C13117.5 (2)
C5—C4—H4120.4O4—C14—C13120.2 (2)
C4—C5—C6120.2 (2)N1—C15—C16124.3 (3)
C4—C5—H5119.9N1—C15—H11117.8
C6—C5—H5119.9C16—C15—H11117.8
C5—C6—C7121.6 (2)C15—C16—C17120.2 (3)
C5—C6—H6119.2C15—C16—H12119.9
C7—C6—H6119.2C17—C16—H12119.9
C2—C7—C6118.0 (2)C16—C17—C17i122.1 (3)
C2—C7—C8124.6 (2)C16—C17—C18115.6 (2)
C6—C7—C8117.4 (2)C17i—C17—C18122.3 (3)
C7—C8—C9117.8 (2)C17—C18—C19120.3 (2)
C7—C8—C13124.4 (2)C17—C18—H13119.8
C9—C8—C13117.7 (2)C19—C18—H13119.8
C8—C9—C10121.6 (2)N1—C19—C18123.8 (3)
C8—C9—H7119.2N1—C19—H14118.1
C10—C9—H7119.2C18—C19—H14118.1
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O4ii1.33 (4)1.29 (4)2.618 (3)171 (3)
O1—H1···N1iii1.04 (3)1.65 (3)2.691 (4)172 (3)
C4—H4···O2iv0.952.563.235 (4)128
C6—H6···O3v0.952.573.472 (4)158
C3—H3···O10.952.332.683 (4)101
C12—H10···O30.952.392.730 (4)100
Symmetry codes: (ii) x+2, y+1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H20O8·C10H8N2
Mr640.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.498 (2), 8.002 (7), 16.208 (6)
α, β, γ (°)99.45 (5), 100.93 (3), 98.42 (5)
V3)802.4 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.32 × 0.28
Data collection
DiffractometerAFC7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.957, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3049, 2830, 1448
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.054, 1.31
No. of reflections2830
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: AFC Diffractometer Control (Molecular Structure Corporation, 1992), AFC Diffractometer Control, TEXSAN (Molecular Structure Corporation, 1992), SIR92 (Altomare et al., 1994), TEXSAN.

Selected bond lengths (Å) top
O1—C11.321 (3)C7—C81.498 (3)
O2—C11.197 (3)C13—C141.486 (3)
O3—C141.272 (2)C15—C161.375 (4)
O4—C141.256 (2)C16—C171.370 (3)
N1—C151.309 (3)C17—C17i1.497 (4)
N1—C191.313 (3)C17—C181.368 (3)
C1—C21.489 (3)C18—C191.382 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O4ii1.33 (4)1.29 (4)2.618 (3)171 (3)
O1—H1···N1iii1.04 (3)1.65 (3)2.691 (4)172 (3)
C4—H4···O2iv0.952.563.235 (4)128
C6—H6···O3v0.952.573.472 (4)158
C3—H3···O10.952.332.683 (4)101
C12—H10···O30.952.392.730 (4)100
Symmetry codes: (ii) x+2, y+1, z; (iii) x+2, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds