Download citation
Download citation
link to html
In the title compound, C9H12NO2+·C2Cl3O2·H2O, the phenyl­alanine mol­ecule exists as a cation with a positively charged amino group and a neutral carboxyl­ic acid group. The tri­chloro­acetic acid mol­ecule is deprotonated as an anion and forms N—H...O hydrogen bonds with the phenylalanin­ium cations. Water mol­ecules also mediate interactions with amino acid and tri­chloro­acetate ions through O—H...O hydrogen bonds. The aggregation pattern observed in the title salt has striking similarities with those observed in L-phenyl­alanine L-phenyl­alaninium formate and L-phenyl­alanine L-phenyl­alaninium perchlorate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013916/ci6224sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013916/ci6224Isup2.hkl
Contains datablock I

CCDC reference: 217627

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in solvent or counterion
  • R factor = 0.038
  • wR factor = 0.116
  • Data-to-parameter ratio = 9.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.06 From the CIF: _reflns_number_total 4030 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4820 Completeness (_total/calc) 83.61% Alert A: < 85% complete (theta max?)
Yellow Alert Alert Level C:
PLAT_214 Alert C Atom Cl11 (Anion/Solvent) ADP max/min Ratio 4.50 prolat PLAT_302 Alert C Anion/Solvent Disorder ......................... 14.00 Perc. PLAT_420 Alert C D-H Without Acceptor N2 - H2C ... ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.06 From the CIF: _reflns_number_total 4030 Count of symmetry unique reflns 4820 Completeness (_total/calc) 83.61% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Systematic investigations being pursued in our laboratory are concerned with the preparation and X-ray analysis of crystalline complexes involving amino acids with organic acids and inorganic salts. The results of these investigations will be useful in the understanding of ionization states, biomolecular interactions and characteristic aggregation patterns. The current focus of the programme is on complexes of amino acids with carboxylic acids which are believed to have existed in the prebiotic milieu (Miller & Orgel, 1974). As a part of the proton-transfer study of the complexes of the type A·B, where A is an amino acid and B is the halogenoacetic acid, the present study reports the crystal structure of a complex, L-phenylalaninium trichloroacetate monohydrate, (I). Phenylalanine is an essential aromatic amino acid commonly found in proteins and plays a key role in the formation of a variety of physiolgically important chemicals that transmit signals between nerve cells. It helps to increase memory and learning and has been used as appetite suppressant. Trichloroacetic acid is a strong organic acid used in organic synthesis and is an excellent tool for treating people who have dynamic wrinkles. The crystal structure of trichloroacetic acid itself was determined only recently in our laboratory (Rajagopal, Mostad et al., 2003). Previous studies on phenylalanine report only the unit-cell dimensions (Khawas & Murthy, 1968; Khawas, 1970, 1971, 1985) and the crystal structure of the D-form with a high R factor of 15% (Weissbuch et al., 1990). The crystal structure L-phenylalanine, however, is yet to be reported. The crystal structure of a complex of a dipeptide with trichloroacetic acid, L-phenylalanineglycine trichloroacetate (Mitra & Subramanian, 1993) has already been reported. Recently, the crystal structures of DL-valinium trichloroacetate (Rajagopal et al., 2002), DL-methoninium trichloroacetate (Rajagopal, Krishnakumar, Mostad & Natarajan, 2003), β-alaninium trichloroacetate (Rajagopal, Krishnakumar, Subha Nandhini et al., 2003), L-phenylalanine L-phenylalaninium dihydrogenphosphate (Ravikumar et al., 2002), L-phenylalaninium maleate (Alagar et al., 2001), L-phenylalanine L-phenylalaninium formate (Gorbitz & Etter, 1992) and L-phenylalnine L-phenylalaninium perchlorate (Srinivasan & Rajaram, 1997) have been reported.

The asymmetric unit of (I) comprises of two crystallographically independent L-phenylalanine cations, two trichloroacetate anions and a water molecule (Fig. 1 and Table 1). The conformation angles ψ1 for the phenylalanine cations are in agreement with the values reported for L-phenylalaninium maleate (Alagar et al., 2001) and L-phenylalanine hydrochloride (AL-Karaghouli & Koetzle, 1975). The branched-side-chain conformation angles χ1 for the two cations are in gauche-II form. These are different from those observed in L-phenylalanine L-phenylalaninium formate with χ1 = 72.3 (4) and 70.8 (4)°, respectively, for the zwitterion and cation and in L-phenylalanine hydrochloride with χ1 = 60.7 (6)°, indicating different side-chain conformations in different environments. The torsion angles χ21 and χ22 for both cations are distinctly different from those observed in L-phenylalanine hydrochloride [84.2 (7) and −96.7 (7)°]. The C—O distances of the carboxylic acid and carboxylate groups of (I) are in good agreement with the other similar carboxylic acid complexes, viz. DL-valinium trichloroacetate, DL-methioninium trichloroacetate and L-phenylalaninium maleate.

The packing of molecules of (I) within the unit cell, viewed down the b axis, is shown in Fig 2. The phenylalaninium cations and trichloroacetate anions form hydrogen-bonded double chains in which they alternate along the a axis and are held together by N—H···O hydrogen bonds. The double chain, on either side, is flanked by the hydrobhobic side chains of phenylalanine leading to alternating hydrophilic and hydrophobic zones along the c axis. These double chains are interconnected through O—H···O and N—H···O hydrogen bonds, to form two-dimensional networks parallel to the ab plane. Water molecules are also found to mediate hydrogen-bonded interactions with phenylalanine and trichloroacetic acid molecules through O—H···O hydrogen bonds (Table 2). A weak head-to-tail hydrogen bond between the symmetry related phenylalaninium ions is present. Short Cl6···Cl9(x, y − 1, z) contact of 3.240 (7) Å and Cl6···Cl12(x, y − 1, z) contact of 3.366 (13) Å are also observed in the structure. The aggregation pattern observed in (I) has striking similarites with those observed in L-phenylalanine L-phenylalaninium # formate (Gorbitz & Etter, 1992), L-phenylalaninium maleate (Alagar et al., 2001) and DL-phenylalaninium maleate (Alagar et al., 2003).

Experimental top

Colorles, needle-shaped single crystals of (I) were grown from a saturated aqueous solution containing L-phenylalanine and trichloroacetic acid in a stoichiometric ratio.

Refinement top

The H atoms of the phenylalaninium cations were placed at calculated positions and were allowed to ride on their respective parent atoms with HFIX instructions using SHELXL97 (Sheldrick, 1997) defaults. Water H atoms were located from a difference map and their positional and isotropic displacement parameters were refined, with the O—H distances restrained to 0.82 Å. A short H···H contact (2.05 Å) involving one of these H atoms (H9B) and H8 is observed. In one of the trichloroacetate anions, the Cl atoms were found to have rotational disorder. It was modeled with three sets of three Cl atoms with the sum of their occupancies (0.559, 0.370 and 0.071, respectively) constrained to be equal to one. For the disordered trichloroacetate ion, the C—Cl bond distances and also the Cl···Cl distances were restrained to be equal. Intensities for nearly 400 reflections were not measured in the 2θ range 46–50° and as a result the completeness of the data set is low (83.61%). As the intensities for Friedel opposites were not measured, the absolute configuration could not be confirmed.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. For clarity, only the major (56%) conformer of the disordered trichloroacetate ion is shown.
[Figure 2] Fig. 2. The molecular packing of (I), viewed down the b axis.
L-Phenylalaninium trichloroacetate top
Crystal data top
2C9H12NO2+·2C2Cl3O2·H2OF(000) = 1384
Mr = 675.15Dx = 1.488 Mg m3
Dm = 1.50 Mg m3
Dm measured by flotation in a mixture of xylene and bromoform
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 21 reflections
a = 19.675 (3) Åθ = 20.5–26.6°
b = 6.115 (1) ŵ = 0.62 mm1
c = 26.584 (2) ÅT = 293 K
β = 109.6 (1)°Needle, colourless
V = 3013 (2) Å30.5 × 0.21 × 0.15 mm
Z = 4
Data collection top
Rikagu AFC-5R
diffractometer
2147 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 30.1°, θmin = 2.6°
ω–2θ scansh = 027
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.855, Tmax = 0.911l = 3732
4124 measured reflections3 standard reflections every 150 reflections
4030 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.955P]
where P = (Fo2 + 2Fc2)/3
4030 reflections(Δ/σ)max < 0.002
416 parametersΔρmax = 0.22 e Å3
94 restraintsΔρmin = 0.29 e Å3
Crystal data top
2C9H12NO2+·2C2Cl3O2·H2OV = 3013 (2) Å3
Mr = 675.15Z = 4
Monoclinic, C2Mo Kα radiation
a = 19.675 (3) ŵ = 0.62 mm1
b = 6.115 (1) ÅT = 293 K
c = 26.584 (2) Å0.5 × 0.21 × 0.15 mm
β = 109.6 (1)°
Data collection top
Rikagu AFC-5R
diffractometer
2147 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.855, Tmax = 0.9113 standard reflections every 150 reflections
4124 measured reflections intensity decay: <2%
4030 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03894 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
4030 reflectionsΔρmin = 0.29 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.32207 (6)0.0979 (3)0.34618 (5)0.0568 (3)
Cl20.47286 (6)0.1705 (4)0.39470 (5)0.0837 (5)
Cl30.37303 (10)0.5184 (3)0.39147 (6)0.0908 (5)
Cl40.16770 (16)0.1951 (10)0.1596 (2)0.179 (4)0.559 (3)
Cl50.0414 (3)0.2298 (9)0.07178 (13)0.126 (2)0.559 (3)
Cl60.0753 (3)0.1634 (4)0.1290 (2)0.1119 (18)0.559 (3)
Cl70.0308 (3)0.0929 (7)0.0953 (2)0.204 (7)0.370 (5)
Cl80.1617 (2)0.0317 (10)0.1756 (2)0.115 (3)0.370 (5)
Cl90.0875 (4)0.3324 (10)0.0956 (3)0.163 (5)0.370 (5)
Cl100.1291 (8)0.1135 (9)0.1568 (12)0.110 (11)0.071 (4)
Cl110.0244 (9)0.0564 (13)0.0704 (2)0.112 (14)0.071 (4)
Cl120.1370 (5)0.322 (2)0.1313 (6)0.075 (7)0.071 (4)
O10.33348 (16)0.4311 (7)0.26883 (11)0.0564 (9)
O20.45296 (16)0.3988 (6)0.29680 (12)0.0558 (8)
O30.05834 (15)0.3549 (6)0.20083 (11)0.0502 (8)
O40.02457 (16)0.1046 (6)0.16324 (12)0.0576 (8)
O50.42418 (15)0.0983 (6)0.26241 (10)0.0463 (7)
O60.32336 (16)0.2340 (7)0.20393 (12)0.0661 (10)
H60.33020.33310.22580.099*
O70.08102 (16)0.1537 (8)0.26370 (14)0.0840 (14)
O80.19164 (15)0.1892 (7)0.32059 (15)0.0707 (10)
H80.19110.30210.30380.106*
O90.19459 (18)0.4639 (7)0.27106 (15)0.0609 (9)
H9A0.2303 (17)0.411 (9)0.2665 (19)0.072 (18)*
H9B0.166 (3)0.484 (16)0.2409 (13)0.14 (3)*
N10.44504 (16)0.1857 (6)0.19399 (11)0.0386 (7)
H1A0.47750.08700.19240.058*
H1B0.45680.23650.22720.058*
H1C0.44430.29560.17190.058*
N20.05619 (17)0.2227 (7)0.30398 (12)0.0474 (9)
H2A0.01990.13150.30140.071*
H2B0.05490.26180.27140.071*
H2C0.05200.34110.32220.071*
C10.3934 (2)0.3813 (7)0.30209 (16)0.0430 (9)
C20.3906 (2)0.2927 (8)0.35611 (16)0.0455 (10)
C30.0326 (2)0.1999 (8)0.17017 (16)0.0416 (9)
C40.07780 (16)0.1187 (3)0.13499 (12)0.0583 (12)
C50.3763 (2)0.0950 (8)0.21959 (16)0.0414 (9)
C60.37234 (19)0.0818 (8)0.17818 (14)0.0378 (9)
H6A0.33760.19270.18060.045*
C70.3476 (2)0.0055 (8)0.12137 (15)0.0472 (10)
H7A0.37880.12580.11950.057*
H7B0.29910.06320.11290.057*
C80.3477 (2)0.1616 (8)0.07960 (15)0.0440 (10)
C90.3105 (2)0.3571 (8)0.07436 (16)0.0505 (11)
H90.28710.39110.09850.061*
C100.3075 (3)0.5018 (10)0.03413 (18)0.0647 (13)
H100.28140.63100.03080.078*
C110.3424 (3)0.4567 (13)0.0006 (2)0.0812 (19)
H110.34080.55540.02760.097*
C120.3798 (4)0.2665 (16)0.0041 (3)0.099 (2)
H120.40370.23620.01990.119*
C130.3829 (3)0.1171 (12)0.04399 (19)0.0725 (16)
H130.40860.01240.04660.087*
C140.1297 (2)0.0930 (9)0.30171 (16)0.0452 (10)
C150.12592 (19)0.1120 (8)0.33227 (14)0.0403 (9)
H150.16550.20930.33240.048*
C160.1335 (3)0.0565 (8)0.38986 (16)0.0530 (12)
H16A0.09270.03320.38950.064*
H16B0.17670.03090.40500.064*
C170.1376 (2)0.2485 (8)0.42601 (15)0.0472 (10)
C180.1857 (2)0.4169 (9)0.43014 (16)0.0537 (11)
H180.21280.41850.40750.064*
C190.1947 (3)0.5819 (10)0.46656 (17)0.0679 (15)
H190.22760.69360.46860.082*
C200.1543 (4)0.5805 (12)0.5002 (2)0.0842 (19)
H200.16020.69090.52540.101*
C210.1058 (3)0.4169 (15)0.4964 (2)0.086 (2)
H210.07800.41830.51860.103*
C220.0973 (3)0.2492 (11)0.46005 (18)0.0652 (14)
H220.06470.13700.45830.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0474 (6)0.0554 (7)0.0692 (7)0.0087 (6)0.0216 (5)0.0193 (6)
Cl20.0468 (6)0.1134 (13)0.0786 (8)0.0024 (8)0.0044 (6)0.0428 (9)
Cl30.1412 (14)0.0731 (10)0.0728 (8)0.0125 (10)0.0552 (9)0.0190 (8)
Cl40.057 (2)0.330 (10)0.168 (5)0.040 (4)0.061 (3)0.149 (6)
Cl50.151 (5)0.170 (5)0.093 (3)0.079 (4)0.090 (3)0.064 (3)
Cl60.193 (6)0.0520 (17)0.133 (4)0.021 (2)0.111 (4)0.009 (2)
Cl70.188 (8)0.277 (13)0.209 (11)0.145 (9)0.149 (8)0.199 (10)
Cl80.075 (4)0.158 (8)0.131 (4)0.065 (4)0.060 (3)0.036 (5)
Cl90.211 (12)0.162 (7)0.191 (11)0.087 (7)0.167 (9)0.108 (8)
Cl100.080 (19)0.092 (15)0.13 (2)0.008 (13)0.005 (16)0.005 (18)
Cl110.047 (10)0.26 (4)0.022 (7)0.063 (16)0.001 (7)0.039 (13)
Cl120.030 (10)0.126 (16)0.079 (15)0.003 (10)0.031 (9)0.036 (12)
O10.0489 (17)0.070 (2)0.0509 (16)0.0018 (17)0.0171 (14)0.0238 (17)
O20.0501 (17)0.059 (2)0.0707 (19)0.0014 (17)0.0361 (15)0.0072 (18)
O30.0488 (16)0.049 (2)0.0569 (17)0.0041 (15)0.0234 (14)0.0170 (16)
O40.0502 (17)0.0522 (19)0.073 (2)0.0110 (18)0.0246 (15)0.0053 (19)
O50.0473 (15)0.0498 (18)0.0364 (14)0.0040 (15)0.0068 (13)0.0085 (14)
O60.0514 (18)0.074 (3)0.0613 (19)0.0207 (18)0.0043 (15)0.0263 (19)
O70.0422 (17)0.116 (4)0.079 (2)0.011 (2)0.0013 (17)0.052 (3)
O80.0401 (17)0.060 (2)0.092 (2)0.0088 (17)0.0051 (16)0.020 (2)
O90.0462 (19)0.063 (2)0.071 (2)0.0060 (18)0.0171 (17)0.006 (2)
N10.0422 (17)0.0409 (19)0.0326 (15)0.0022 (17)0.0123 (13)0.0032 (15)
N20.0404 (18)0.058 (2)0.0424 (18)0.0082 (18)0.0117 (15)0.0058 (18)
C10.053 (2)0.034 (2)0.046 (2)0.005 (2)0.0213 (19)0.0036 (19)
C20.045 (2)0.045 (3)0.047 (2)0.002 (2)0.0171 (18)0.009 (2)
C30.042 (2)0.043 (2)0.043 (2)0.009 (2)0.0188 (18)0.008 (2)
C40.063 (3)0.062 (3)0.059 (3)0.007 (3)0.031 (2)0.016 (2)
C50.039 (2)0.042 (2)0.047 (2)0.006 (2)0.0209 (19)0.009 (2)
C60.0349 (18)0.039 (2)0.0392 (19)0.0034 (19)0.0121 (15)0.0062 (19)
C70.055 (2)0.040 (2)0.040 (2)0.006 (2)0.0079 (19)0.005 (2)
C80.044 (2)0.046 (3)0.036 (2)0.005 (2)0.0052 (17)0.005 (2)
C90.063 (3)0.045 (3)0.040 (2)0.001 (2)0.012 (2)0.007 (2)
C100.077 (3)0.050 (3)0.050 (3)0.003 (3)0.001 (2)0.013 (2)
C110.086 (4)0.090 (5)0.063 (3)0.011 (4)0.018 (3)0.034 (4)
C120.094 (5)0.143 (8)0.076 (4)0.002 (5)0.049 (4)0.035 (5)
C130.065 (3)0.090 (4)0.066 (3)0.014 (3)0.027 (3)0.017 (3)
C140.034 (2)0.055 (3)0.047 (2)0.007 (2)0.0145 (18)0.009 (2)
C150.0303 (17)0.048 (2)0.0409 (19)0.005 (2)0.0091 (15)0.001 (2)
C160.062 (3)0.050 (3)0.043 (2)0.011 (2)0.012 (2)0.001 (2)
C170.048 (2)0.053 (3)0.033 (2)0.005 (2)0.0045 (18)0.006 (2)
C180.064 (3)0.053 (3)0.034 (2)0.007 (3)0.0045 (19)0.004 (2)
C190.093 (4)0.051 (3)0.040 (2)0.006 (3)0.005 (2)0.001 (3)
C200.113 (5)0.069 (4)0.051 (3)0.029 (4)0.002 (3)0.011 (3)
C210.082 (4)0.122 (6)0.052 (3)0.017 (5)0.020 (3)0.013 (4)
C220.057 (3)0.084 (4)0.051 (3)0.005 (3)0.013 (2)0.001 (3)
Geometric parameters (Å, º) top
Cl1—C21.752 (4)C5—C61.526 (5)
Cl2—C21.765 (5)C6—C71.520 (5)
Cl3—C21.769 (5)C6—H6A0.98
Cl4—C41.731 (3)C7—C81.509 (6)
Cl5—C41.729 (3)C7—H7A0.97
Cl6—C41.732 (3)C7—H7B0.97
Cl7—C41.728 (3)C8—C131.374 (6)
Cl8—C41.725 (3)C8—C91.384 (6)
Cl9—C41.725 (3)C9—C101.374 (6)
Cl10—C41.726 (3)C9—H90.93
Cl11—C41.728 (4)C10—C111.350 (8)
Cl12—C41.729 (3)C10—H100.93
O1—C11.251 (5)C11—C121.359 (10)
O2—C11.230 (5)C11—H110.93
O3—C31.242 (5)C12—C131.385 (9)
O4—C31.225 (5)C12—H120.93
O5—C51.210 (5)C13—H130.93
O6—C51.300 (5)C14—C151.510 (6)
O6—H60.82C15—C161.526 (5)
O7—C141.194 (5)C15—H150.98
O8—C141.294 (5)C16—C171.502 (6)
O8—H80.82C16—H16A0.97
O9—H9A0.82 (4)C16—H16B0.97
O9—H9B0.82 (4)C17—C181.377 (7)
N1—C61.491 (5)C17—C221.389 (6)
N1—H1A0.89C18—C191.368 (7)
N1—H1B0.89C18—H180.93
N1—H1C0.89C19—C201.383 (8)
N2—C151.488 (5)C19—H190.93
N2—H2A0.89C20—C211.363 (10)
N2—H2B0.89C20—H200.93
N2—H2C0.89C21—C221.381 (9)
C1—C21.553 (5)C21—H210.93
C3—C41.571 (6)C22—H220.93
C5—O6—H6109.5C6—C7—H7A108.6
C14—O8—H8109.5C8—C7—H7B108.6
H9A—O9—H9B105 (6)C6—C7—H7B108.6
C6—N1—H1A109.5H7A—C7—H7B107.6
C6—N1—H1B109.5C13—C8—C9118.2 (4)
H1A—N1—H1B109.5C13—C8—C7119.9 (5)
C6—N1—H1C109.5C9—C8—C7121.8 (4)
H1A—N1—H1C109.5C10—C9—C8121.2 (5)
H1B—N1—H1C109.5C10—C9—H9119.4
C15—N2—H2A109.5C8—C9—H9119.4
C15—N2—H2B109.5C11—C10—C9120.1 (6)
H2A—N2—H2B109.5C11—C10—H10120.0
C15—N2—H2C109.5C9—C10—H10120.0
H2A—N2—H2C109.5C10—C11—C12119.7 (6)
H2B—N2—H2C109.5C10—C11—H11120.2
O2—C1—O1127.3 (4)C12—C11—H11120.2
O2—C1—C2117.8 (4)C11—C12—C13121.2 (6)
O1—C1—C2114.9 (3)C11—C12—H12119.4
C1—C2—Cl1111.2 (3)C13—C12—H12119.4
C1—C2—Cl3107.0 (3)C8—C13—C12119.5 (6)
Cl1—C2—Cl3109.4 (2)C8—C13—H13120.2
C1—C2—Cl2112.1 (3)C12—C13—H13120.2
Cl1—C2—Cl2108.0 (3)O7—C14—O8124.8 (5)
Cl3—C2—Cl2109.0 (2)O7—C14—C15122.9 (4)
O4—C3—O3127.8 (4)O8—C14—C15112.2 (3)
O4—C3—C4115.8 (4)N2—C15—C14108.0 (3)
O3—C3—C4116.4 (3)N2—C15—C16111.8 (3)
C3—C4—Cl9108.8 (4)C14—C15—C16110.4 (4)
C3—C4—Cl8109.8 (3)N2—C15—H15108.8
Cl9—C4—Cl8109.6 (3)C14—C15—H15108.8
C3—C4—Cl10116.4 (13)C16—C15—H15108.8
C3—C4—Cl11112.6 (7)C17—C16—C15115.7 (4)
Cl10—C4—Cl11104.1 (8)C17—C16—H16A108.3
C3—C4—Cl7107.8 (3)C15—C16—H16A108.3
Cl9—C4—Cl7110.0 (3)C17—C16—H16B108.3
Cl8—C4—Cl7110.8 (3)C15—C16—H16B108.3
C3—C4—Cl5108.8 (3)H16A—C16—H16B107.4
C3—C4—Cl12109.4 (8)C18—C17—C22118.2 (5)
Cl10—C4—Cl12106.4 (9)C18—C17—C16121.6 (4)
Cl11—C4—Cl12107.4 (6)C22—C17—C16119.9 (5)
C3—C4—Cl4113.6 (3)C19—C18—C17122.1 (5)
Cl5—C4—Cl4107.4 (3)C19—C18—H18119.0
C3—C4—Cl6111.4 (3)C17—C18—H18119.0
Cl5—C4—Cl6108.2 (2)C18—C19—C20119.2 (6)
Cl4—C4—Cl6107.3 (2)C18—C19—H19120.4
O5—C5—O6125.3 (4)C20—C19—H19120.4
O5—C5—C6121.8 (4)C21—C20—C19119.8 (6)
O6—C5—C6113.0 (3)C21—C20—H20120.1
N1—C6—C7112.8 (3)C19—C20—H20120.1
N1—C6—C5106.6 (3)C20—C21—C22120.9 (6)
C7—C6—C5112.9 (4)C20—C21—H21119.5
N1—C6—H6A108.1C22—C21—H21119.5
C7—C6—H6A108.1C21—C22—C17119.8 (6)
C5—C6—H6A108.1C21—C22—H22120.1
C8—C7—C6114.5 (4)C17—C22—H22120.1
C8—C7—H7A108.6
O2—C1—C2—Cl1135.4 (4)N1—C6—C7—C855.2 (5)
O1—C1—C2—Cl145.8 (5)C5—C6—C7—C8176.1 (3)
O2—C1—C2—Cl3105.1 (4)C6—C7—C8—C13127.5 (5)
O1—C1—C2—Cl373.7 (4)C6—C7—C8—C955.3 (5)
O2—C1—C2—Cl214.4 (5)C13—C8—C9—C101.2 (6)
O1—C1—C2—Cl2166.8 (3)C7—C8—C9—C10176.1 (4)
O4—C3—C4—Cl9118.9 (4)C8—C9—C10—C111.4 (7)
O3—C3—C4—Cl959.8 (4)C9—C10—C11—C120.7 (9)
O4—C3—C4—Cl8121.1 (4)C10—C11—C12—C130.0 (11)
O3—C3—C4—Cl860.2 (4)C9—C8—C13—C120.5 (8)
O4—C3—C4—Cl1080.7 (4)C7—C8—C13—C12176.8 (5)
O3—C3—C4—Cl10100.6 (4)C11—C12—C13—C80.1 (10)
O4—C3—C4—Cl1139.3 (5)O7—C14—C15—N24.4 (6)
O3—C3—C4—Cl11139.4 (4)O8—C14—C15—N2173.8 (4)
O4—C3—C4—Cl70.4 (4)O7—C14—C15—C16118.1 (5)
O3—C3—C4—Cl7179.1 (4)O8—C14—C15—C1663.7 (5)
O4—C3—C4—Cl579.2 (4)N2—C15—C16—C1765.2 (5)
O3—C3—C4—Cl599.5 (4)C14—C15—C16—C17174.5 (4)
O4—C3—C4—Cl12158.7 (4)C15—C16—C17—C1851.3 (6)
O3—C3—C4—Cl1220.0 (4)C15—C16—C17—C22134.9 (4)
O4—C3—C4—Cl4161.3 (4)C22—C17—C18—C190.3 (7)
O3—C3—C4—Cl420.0 (5)C16—C17—C18—C19173.7 (4)
O4—C3—C4—Cl639.9 (4)C17—C18—C19—C200.2 (7)
O3—C3—C4—Cl6141.4 (4)C18—C19—C20—C210.6 (8)
O5—C5—C6—N117.1 (5)C19—C20—C21—C221.4 (9)
O6—C5—C6—N1163.8 (3)C20—C21—C22—C171.3 (9)
O5—C5—C6—C7141.5 (4)C18—C17—C22—C210.5 (7)
O6—C5—C6—C739.5 (5)C16—C17—C22—C21174.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1i0.821.832.642 (4)172
O8—H8···O9i0.821.692.507 (5)177
O9—H9A···O10.82 (4)2.01 (3)2.760 (4)151 (6)
O9—H9A···Cl10.82 (4)2.98 (5)3.454 (5)120 (4)
O9—H9B···O30.82 (4)2.18 (6)2.786 (5)131 (7)
O9—H9B···Cl40.82 (4)2.80 (8)3.274 (6)118 (7)
N1—H1A···O3ii0.892.092.971 (5)172
N1—H1B···O20.892.122.984 (4)163
N1—H1B···O7iii0.892.402.869 (5)113
N1—H1C···O4iii0.892.022.814 (5)147
N2—H2A···O2iv0.891.922.798 (5)171
N2—H2B···O30.891.982.873 (4)177
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula2C9H12NO2+·2C2Cl3O2·H2O
Mr675.15
Crystal system, space groupMonoclinic, C2
Temperature (K)293
a, b, c (Å)19.675 (3), 6.115 (1), 26.584 (2)
β (°) 109.6 (1)
V3)3013 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.5 × 0.21 × 0.15
Data collection
DiffractometerRikagu AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.855, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
4124, 4030, 2147
Rint0.013
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.01
No. of reflections4030
No. of parameters416
No. of restraints94
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C11.251 (5)O5—C51.210 (5)
O2—C11.230 (5)O6—C51.300 (5)
O3—C31.242 (5)O7—C141.194 (5)
O4—C31.225 (5)O8—C141.294 (5)
O2—C1—C2117.8 (4)O5—C5—C6121.8 (4)
O1—C1—C2114.9 (3)O6—C5—C6113.0 (3)
O4—C3—C4115.8 (4)O7—C14—C15122.9 (4)
O3—C3—C4116.4 (3)O8—C14—C15112.2 (3)
O5—C5—C6—N117.1 (5)O7—C14—C15—N24.4 (6)
O6—C5—C6—N1163.8 (3)O8—C14—C15—N2173.8 (4)
N1—C6—C7—C855.2 (5)N2—C15—C16—C1765.2 (5)
C6—C7—C8—C13127.5 (5)C15—C16—C17—C1851.3 (6)
C6—C7—C8—C955.3 (5)C15—C16—C17—C22134.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O1i0.821.832.642 (4)172
O8—H8···O9i0.821.692.507 (5)177
O9—H9A···O10.82 (4)2.01 (3)2.760 (4)151 (6)
O9—H9A···Cl10.82 (4)2.98 (5)3.454 (5)120 (4)
O9—H9B···O30.82 (4)2.18 (6)2.786 (5)131 (7)
O9—H9B···Cl40.82 (4)2.80 (8)3.274 (6)118 (7)
N1—H1A···O3ii0.892.092.971 (5)172
N1—H1B···O20.892.122.984 (4)163
N1—H1B···O7iii0.892.402.869 (5)113
N1—H1C···O4iii0.892.022.814 (5)147
N2—H2A···O2iv0.891.922.798 (5)171
N2—H2B···O30.891.982.873 (4)177
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds