Download citation
Download citation
link to html
In the title compound, C9H9ClN4O, the dihedral angle between the substituted phenyl and triazole rings is 4.86 (5)°. In the crystalline state, the mol­ecules exist as centrosymmetrically related N—H...O hydrogen-bonded dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012480/cv6198sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012480/cv6198Isup2.hkl
Contains datablock I

CCDC reference: 217459

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.117
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
CELLV_02 Alert B The supplied cell volume s.u. differs from that calculated from the cell parameter s.u.'s by > 4 Calculated cell volume su = 20.63 Cell volume su given = 16.00 REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.82 From the CIF: _reflns_number_total 2060 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2372 Completeness (_total/calc) 86.85% Alert B: < 90% complete (theta max?)
Yellow Alert Alert Level C:
CRYSC_01 Alert C There is an ordering error in _exptl_crystal_colour. It should be (QUALIFIER) (INTENSITY) (BASE_COLOUR).
0 Alert Level A = Potentially serious problem
2 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The amino functionalized triazole derivatives serve as starting compounds for heterocyclic synthesis. The triazole moiety possesses many pharmacological properties, e.g. antimicrobial (Habib et al., 1997), antiviral (Ergen et al., 1996), anti-HIV-1 (Invidiata et al., 1996), antifungal, antimycobacterial and anticonvulsant (Gu¨lerman et al., 1997). It is also a highly potent eosinophilia inhibitor (Naito et al., 1996) and used as fungicide (Crofton, 1996) and herbicide (Tada et al., 1995). Some triazole derivatives have been evaluated for their antibacterial activity against both Gram-positive and Gram-negative bacteria (Bs et al., 1996). In view of these findings, the structure determination of the title compound, (I), was undertaken.

A perspective view of (I), including the atomic numbering scheme, is shown in Fig. 1. The bond lengths and angles in (I) are unexceptional (Table 1) and comparable with those reported for related structures (Chen et al., 1998; Wang et al., 1998; Thamotharan, Parthasarathi, Sunagar et al., 2003; Thamotharan, Parthasarathi, Hunnur et al., 2003). The sum of bond angles around N41 is 320° which indicates pyramidal geometry at N41. The dihedral angle between phenyl and triazole rings is 4.86 (5)°, while the same angles in chloro (Thamotharan, Parthasarathi, Sunagar et al., 2003) and bromo (Thamotharan, Parthasarathi, Hunnur et al., 2003) derivatives of triazole are 30.63 (9) and 8.93 (14)°, respectively. In the crystal structure, centrosymmetrically related molecules form dimeric pairs through N—H···O intermolecular hydrogen bonds (Fig. 2) and have a graph-set motif of R22(10) (Table 2) (Bernstein et al., 1995).

Experimental top

The title compound prepared by heating 3-(4-chlorophenyl)-5-methyl-1,3,4-oxadiazolin-2-one with hydrazine hydrate in ethanol. The solid obtained, (I), was crystallized from absolute ethanol (m.p. 458–459 K).

Refinement top

The structure was solved with DIRDIF99 (Beurskens et al., 1999) using the TRACOR option, with the input Cl atom at the origin. The positions of the amino H atoms were located from difference Fourier map and refined freely along with its isotropic displacement parameter. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å), with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the parent C—C bond. All remaining H atoms were placed in geometrically idealized position (C—H = 0.93 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: IPDS Software Package (Stoe & Cie, 1997); cell refinement: IPDS Software Package; data reduction: IPDS Software Package; program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
[Figure 2] Fig. 2. Connection of molecules into dimers [symmetry codes: (*) 1 − x, 2 − y, 1 − z; (#) −x, 2 − y, 1 − z]. H atoms bonded to C atoms have been omitted for clarity.
4-Amino-2-(p-chlorophenyl)-5-methyl-3,4-dihydro-2H-1,2,4-triazol-3-one top
Crystal data top
C9H9ClN4OZ = 2
Mr = 224.65F(000) = 232
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Melting point: 458 K
a = 4.0135 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.691 (2) ÅCell parameters from 4074 reflections
c = 11.986 (2) Åθ = 12.2–27.9°
α = 117.09 (3)°µ = 0.36 mm1
β = 90.79 (3)°T = 293 K
γ = 91.89 (3)°Platelet, translucent colourless
V = 500.17 (16) Å30.61 × 0.30 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
1807 reflections with I > 2σ(I)
Radiation source: sealed LFF X-ray tube, 12 x 0.4 mmRint = 0.024
Plane graphite monochromatorθmax = 27.8°, θmin = 3.9°
Detector resolution: 9 pixels mm-1h = 44
rotation method scansk = 1515
4391 measured reflectionsl = 1515
2060 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0798P]
where P = (Fo2 + 2Fc2)/3
2060 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H9ClN4Oγ = 91.89 (3)°
Mr = 224.65V = 500.17 (16) Å3
Triclinic, P1Z = 2
a = 4.0135 (8) ÅMo Kα radiation
b = 11.691 (2) ŵ = 0.36 mm1
c = 11.986 (2) ÅT = 293 K
α = 117.09 (3)°0.61 × 0.30 × 0.15 mm
β = 90.79 (3)°
Data collection top
Stoe IPDS
diffractometer
1807 reflections with I > 2σ(I)
4391 measured reflectionsRint = 0.024
2060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2060 reflectionsΔρmin = 0.17 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01725 (13)0.25508 (4)0.25344 (5)0.0687 (2)
O30.2956 (3)0.84827 (10)0.44989 (9)0.0522 (3)
N10.5942 (4)0.74844 (12)0.14814 (11)0.0459 (3)
N20.5474 (3)0.73160 (11)0.25536 (10)0.0411 (3)
N40.3286 (3)0.90980 (11)0.28987 (10)0.0414 (3)
N410.1680 (5)1.02716 (13)0.34326 (14)0.0534 (4)
H4110.311 (6)1.084 (2)0.406 (2)0.072 (6)*
H4120.000 (8)1.018 (3)0.380 (3)0.086 (8)*
C30.3821 (4)0.83051 (12)0.34512 (12)0.0396 (3)
C50.4575 (4)0.85647 (13)0.17266 (13)0.0427 (3)
C60.6598 (4)0.61839 (12)0.25724 (12)0.0393 (3)
C70.7941 (5)0.52468 (15)0.14989 (14)0.0513 (4)
H70.80860.53680.07860.062*
C80.9069 (5)0.41330 (16)0.14796 (16)0.0554 (4)
H80.99940.35100.07610.066*
C90.8809 (4)0.39557 (14)0.25356 (16)0.0488 (4)
C100.7467 (5)0.48814 (16)0.36130 (15)0.0538 (4)
H100.73110.47500.43200.065*
C110.6354 (5)0.60032 (15)0.36411 (14)0.0506 (4)
H110.54540.66280.43640.061*
C510.4467 (5)0.91773 (17)0.08833 (16)0.0577 (4)
H5110.53870.86180.00940.086*
H5120.57470.99780.12590.086*
H5130.21960.93330.07510.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0770 (4)0.0466 (3)0.0876 (4)0.0169 (2)0.0015 (2)0.0343 (2)
O30.0677 (8)0.0487 (6)0.0415 (5)0.0181 (5)0.0189 (5)0.0204 (4)
N10.0588 (8)0.0433 (6)0.0374 (6)0.0113 (5)0.0101 (5)0.0190 (5)
N20.0517 (8)0.0361 (5)0.0352 (5)0.0101 (5)0.0086 (4)0.0154 (4)
N40.0472 (7)0.0358 (5)0.0397 (6)0.0095 (4)0.0050 (4)0.0153 (4)
N410.0638 (10)0.0426 (7)0.0515 (7)0.0214 (6)0.0091 (6)0.0180 (6)
C30.0428 (8)0.0353 (6)0.0374 (6)0.0060 (5)0.0047 (5)0.0133 (5)
C50.0481 (8)0.0401 (6)0.0389 (6)0.0055 (5)0.0033 (5)0.0169 (5)
C60.0411 (8)0.0351 (6)0.0398 (6)0.0059 (5)0.0042 (5)0.0151 (5)
C70.0654 (11)0.0462 (8)0.0424 (7)0.0165 (6)0.0140 (6)0.0189 (6)
C80.0666 (11)0.0430 (7)0.0506 (8)0.0185 (7)0.0130 (7)0.0150 (6)
C90.0486 (9)0.0381 (7)0.0596 (9)0.0067 (6)0.0010 (6)0.0217 (6)
C100.0665 (11)0.0503 (8)0.0511 (8)0.0111 (7)0.0076 (7)0.0281 (7)
C110.0667 (11)0.0440 (7)0.0415 (7)0.0141 (6)0.0116 (6)0.0188 (6)
C510.0747 (12)0.0554 (9)0.0517 (8)0.0145 (8)0.0088 (7)0.0312 (7)
Geometric parameters (Å, º) top
Cl1—C91.7477 (16)C6—C111.394 (2)
O3—C31.2329 (17)C7—C81.383 (2)
N1—C51.3017 (19)C7—H70.9300
N1—N21.4001 (16)C8—C91.377 (2)
N2—C31.3682 (18)C8—H80.9300
N2—C61.4220 (18)C9—C101.383 (2)
N4—C51.3687 (18)C10—C111.386 (2)
N4—C31.3828 (18)C10—H100.9300
N4—N411.4063 (17)C11—H110.9300
N41—H4110.92 (2)C51—H5110.9600
N41—H4120.84 (3)C51—H5120.9600
C5—C511.482 (2)C51—H5130.9600
C6—C71.386 (2)
C5—N1—N2104.81 (12)C8—C7—H7119.7
C3—N2—N1111.97 (11)C6—C7—H7119.7
C3—N2—C6128.90 (12)C9—C8—C7119.31 (15)
N1—N2—C6119.10 (11)C9—C8—H8120.3
C5—N4—C3109.34 (12)C7—C8—H8120.3
C5—N4—N41124.21 (13)C8—C9—C10120.81 (14)
C3—N4—N41126.46 (12)C8—C9—Cl1120.36 (13)
N4—N41—H411105.8 (16)C10—C9—Cl1118.84 (13)
N4—N41—H412108 (2)C9—C10—C11120.16 (15)
H411—N41—H412106 (2)C9—C10—H10119.9
O3—C3—N2130.39 (13)C11—C10—H10119.9
O3—C3—N4126.73 (13)C10—C11—C6119.22 (14)
N2—C3—N4102.89 (11)C10—C11—H11120.4
N1—C5—N4110.99 (13)C6—C11—H11120.4
N1—C5—C51125.64 (13)C5—C51—H511109.5
N4—C5—C51123.36 (14)C5—C51—H512109.5
C7—C6—C11119.98 (13)H511—C51—H512109.5
C7—C6—N2118.75 (13)C5—C51—H513109.5
C11—C6—N2121.28 (13)H511—C51—H513109.5
C8—C7—C6120.53 (15)H512—C51—H513109.5
C5—N1—N2—C30.16 (17)N41—N4—C5—C510.9 (2)
C5—N1—N2—C6177.82 (13)C3—N2—C6—C7173.75 (15)
N1—N2—C3—O3179.45 (15)N1—N2—C6—C73.8 (2)
C6—N2—C3—O31.7 (3)C3—N2—C6—C115.9 (2)
N1—N2—C3—N40.19 (15)N1—N2—C6—C11176.50 (14)
C6—N2—C3—N4177.92 (13)C11—C6—C7—C80.5 (3)
C5—N4—C3—O3179.20 (15)N2—C6—C7—C8179.87 (15)
N41—N4—C3—O30.8 (3)C6—C7—C8—C90.8 (3)
C5—N4—C3—N20.46 (16)C7—C8—C9—C100.6 (3)
N41—N4—C3—N2179.57 (15)C7—C8—C9—Cl1179.34 (14)
N2—N1—C5—N40.46 (17)C8—C9—C10—C110.2 (3)
N2—N1—C5—C51178.96 (15)Cl1—C9—C10—C11179.78 (14)
C3—N4—C5—N10.61 (18)C9—C10—C11—C60.1 (3)
N41—N4—C5—N1179.42 (14)C7—C6—C11—C100.0 (3)
C3—N4—C5—C51179.15 (14)N2—C6—C11—C10179.67 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H411···O3i0.92 (2)2.17 (2)3.043 (3)159 (2)
N41—H412···O3ii0.84 (3)2.30 (3)2.958 (2)135 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9H9ClN4O
Mr224.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.0135 (8), 11.691 (2), 11.986 (2)
α, β, γ (°)117.09 (3), 90.79 (3), 91.89 (3)
V3)500.17 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.61 × 0.30 × 0.15
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4391, 2060, 1807
Rint0.024
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.06
No. of reflections2060
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: IPDS Software Package (Stoe & Cie, 1997), IPDS Software Package, DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
N1—C51.3017 (19)N4—C51.3687 (18)
N1—N21.4001 (16)N4—C31.3828 (18)
N2—C31.3682 (18)
C5—N1—N2104.81 (12)N4—N41—H412108 (2)
C3—N2—N1111.97 (11)H411—N41—H412106 (2)
C5—N4—C3109.34 (12)N2—C3—N4102.89 (11)
N4—N41—H411105.8 (16)N1—C5—N4110.99 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H411···O3i0.92 (2)2.17 (2)3.043 (3)159 (2)
N41—H412···O3ii0.84 (3)2.30 (3)2.958 (2)135 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds