Download citation
Download citation
link to html
The title compound, [CoII(H2O)6]3[V10O28]·(18-Crown-6)2·10H2O, was obtained by mixing 18-crown-6 with K2[CoII(H2O)6]2[V10O28]·4H2O. The centrosymmetric [V10O28]6− polyanion forms a three-dimensional network via O—H...O hydrogen bonds with water mol­ecules. The V...V distances are in the range 3.068 (1)–3.266 (1) Å; the four types of V—O bond lengths are in the ranges 1.599 (3)–1.611 (2) (Ot), 1.923 (2)–2.030 (2) (Oc), 1.668 (2)–2.110 (3) (Ob) and 2.062 (2)–2.365 (2) Å (Oh). The number of Co2+ cations in the structure could be controlled by the neutral, bulky 18-crown-6 ether. All of the six O atoms in the 18-crown-6 form hydrogen bonds with water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011747/lh6059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011747/lh6059Isup2.hkl
Contains datablock I

CCDC reference: 217358

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • H-atom completeness 93%
  • Disorder in solvent or counterion
  • R factor = 0.042
  • wR factor = 0.108
  • Data-to-parameter ratio = 17.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 5.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C24 H104 Co3 O68 V10 Atom count from the _atom_site data: C24 H96 Co3 O68 V10 CELLZ_01 From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C24 H104 Co3 O68 V10 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 24.00 24.00 0.00 H 104.00 96.00 8.00 Co 3.00 3.00 0.00 O 68.00 68.00 0.00 V 10.00 10.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The bulky adducts of crown-ethers are sometimes found in polyoxometalates e.g.(18-crown-6.K)2·K[H6CoMo6O24].12H2O (Nagano et al., 1990) and [Na(dibenzo-18-crown-6)(MeCN)]3[PMo12O40] (You et al., 2001), (18-crown-6)[H3PMo12O40].22H2O (You, Wang, He et al., 2000), H3PW12O40(benzo-15-crown-5)6.16H2O (You, Wang, Zhang et al., 2000), and [(H3O)+(dibenzo-18-crown-6)]2[HPMo12O40]. (dibenzo-18–crown-6)·(CH3CN)3·H2O (You et al., 2002).

Since the decavanadate anion, [V10O28]6− structure was reported by Evans (1966), the crystal structures of many salts have been characterized e.g. alkali metals (Durif et al., 1980; Rigotti et al., 1987), alkaline earth metals (Swallow et al., 1966; Nieto et al., 1993; Kamenar et al., 1996; Strukan et al., 1999), lanthanides (Saf'yanov & Belov, 1976; Saf'yanov et al., 1978; Rivero et al., 1984, 1985; Naruke et al., 1999; Peng et al., 2002), ammonium (Eglmeier et al., 1993) and double salts (Avtamonova et al., 1990; Crans et al., 1994; Fratzky et al., 2000). The double salts of transition elements and alkali metals or ammonium ions e.g. K2[ZnII(H2O)6]2[V10O28]·4H2O (Evans, 1966), [Na(H2O)3]2[NiII(H2O)]2·[V10O28]·4H2O (Higami et al., 2002), (NH4)4[CoII(H2O)6][[V10O28]·4H2O (Nowogrocki et al., 1977), Na4[NiII(H2O)6][[V10O28].17H2O (Sun et al., 2002) and K2[CoII(H2O)6]2[V10O28]·4H2O (Lee et al., 2003) have also been reported.

A structure of a [MII(H2O)6]3[V10O28] (where M is a transition element) salt has not yet been reported. We were able to prepare this type of salt by introducing 18-crown-6 into the decavanadate crystal system. The number of Co2+ cations in the decavanadate might be controlled by the neutral bulky 18-crown-6 e ther. We report here the structure of [CoII(H2O)6]3[V10O28].(18-crown–6)2.10H2O, (I), which was prepared by mixing 18-crown-6 with K2[CoII(H2O)6]2[V10O28]·4H2O (Lee et al., 2003) and the role of the 18-crown-6 appears to be important in crystal packing of (I).

Fig. 1 shows the hydrogen-bonding interactions of 18-crown-6 with the water molecules in (I). The Owater—H···Ocrown ether hydrogen-bonding interactions with five water molecules involve all of the six O atoms in the 18-crown-6. These distances are in the range of 2.764 (4)–3.002 (4) Å. Because of the asymmetric hydrogen bonding, the six-membered O-atom ring in the 18-crown-6 does not make planar hexagon. The dihedral angles formed by the O15···O17···O18···O20 tetragon and O15···16···17 and O18···19···20 triangles are 60.2 (1) and 21.1 (2)°, respectively, and the ring is in a boat conformation.

The configuration of the [V10O28]6− in (I) is shown in Fig. 2. The centrosymmetric polyanion consists of five independent (VO6) octahedra sharing edges with approximate D2 h symmetry. The labeling of the O atoms in the polyanion is the same as the labeling in the previous structure (Lee et al., 2003). The V···V distances are in the range of 3.068 (3)–3.266 (3) Å; the four types of V—O bond length are in the ranges 1.599 (3)–1.611 (2) (Ot), 1.923 (3)–2.030 (2) (Oc), 1.668 (2)–2.110 (3) (Ob) and 2.062 (3)–2.365 (2) Å (Oh). The bond lengths and angles of the [V10O28]6− show a similar trend to those found in the reference literatures. The frame work of [V10O28]6− has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Fig. 3 shows the crystal packing in the (I) with the hydrogen-bonding interactions. The [V10O28]6− polyanion is surrounded by [Co(H2O)6]2+ cations, water molecules and 18-crown-6 ethers, forming hydrogen bonds between them. Decavanadate–[Co(H2O)6]2+ layers are separated by the layers formed by 18-crown-6 molecules. These layers are further linked to each other by O—H···O hydrogen bonds as shown in Fig. 1. A l l of the O atoms in the polyanion except Oh1, Ob6, Ob8, Ot12 and Ot14 form strong Owater···Opolyanion hydrogen bonds with coordination water of [Co(II)(H2O)6]2+ and crystalline water molecules. In total the formula unit contains 28 water molecules, of which 18 are coodinated to the three Co2+ ions, forming a octahedron. The remaining water molecules fill the space in the unit cell, forming a network of hydrogen-bonds. Ow14 and Ow15 were refined by reducing their site occupancies to 0.5 indicating one full occupancy atom disordered over two sites within the lattice. The distance of Ow13···Ot14ii [symetry code: (ii) −x, 1 − y, 1 − z] is 3.080 (5) Å, but no suitable hydrogen bonds could be confirmed because H atom positions for Ow13 could not be determined.

There are one and half crystallographically independent Co2+ ions in the asymmetric unit, Co2 lies on an inversion center in the space group P1. The Co2+ ions are surrounded by six coordination water molecules in the form of an irregular octahedron, with distances in the range 2.062 (3)–2.125 (3) Å. The probable O—H···O hydrogen-bond distances, less than 3.1 Å in (I), involving water are given in Table 2.

Experimental top

Pale blue–brown crystals of the title compound were obtained by concentration of stoichiometric mixture solution of 18-crown-6 and K2[CoII(H2O)6]2[V10O28] (Lee et al., 2003).

Refinement top

During the refinement process, sensible displacement parameters of Ow14 and Ow15 were obtained by reducing the occupancy of these atoms to 0.5 (O···O distance is 1.40 Å). The H atoms of the Ow13, Ow14 and Ow15 water molecules could not be located from electron-density maps. These H atoms were not included in the caculations (although they are included in the empirical formula). All hydrogen atoms bonded to C atoms were included in the structure-factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients {Uiso(H) = 1.2Ueq(C)]. The H atoms of the water atoms (except for those of Ow13, Ow14 and Ow15) were located in difference electron-density maps, refined using a riding model with the application of loose O—H bond-length restraints, and also refined isotropically [Uiso(H) = 1.5Ueq(O)]. This treatment gave O—H distances ranging from 0.75 to 1.03 Å. Anisotropic displacement parameters were used for all non-H atoms. The highest peak in the difference map is 1.09 Å from Ow14, and the largest hole is 0.35 Å from H29a.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Hydrogen-bonding interactions between the 18-crown-6 and water molecules. Probable Owater···O hydrogen bonds are shown in blue broken lines. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The polyanion structure in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 3] Fig. 3. The crystal packing of (I) in the unit cell shown as polyhedral model. Purple octahedron is [Co(H2O)]2+. Probable Owater···O hydrogen bonds are shown in red broken lines. [Symmetry code: (i) −x, −y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, y, 1 + z.]
(I) top
Crystal data top
[Co(H2O)6]3[V10O28]·(C12H24O6)2·10H2OZ = 1
Mr = 2167.26F(000) = 1103
Triclinic, P1Dx = 1.940 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 12.285 (4) ÅCell parameters from 26 reflections
b = 13.924 (3) Åθ = 9.6–10.5°
c = 11.120 (3) ŵ = 1.97 mm1
α = 101.33 (3)°T = 298 K
β = 92.63 (2)°Triclinic, pale blue–brown
γ = 84.26 (2)°0.38 × 0.25 × 0.13 mm
V = 1855.1 (9) Å3
Data collection top
Stoe Stadi-4
diffractometer
6530 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ω/2–θ scansh = 1515
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 1817
Tmin = 0.608, Tmax = 0.812l = 014
8466 measured reflections3 standard reflections every 60 min
8466 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0423P)2 + 2.3315P]
where P = (Fo2 + 2Fc2)/3
8466 reflections(Δ/σ)max = 0.001
484 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(H2O)6]3[V10O28]·(C12H24O6)2·10H2Oγ = 84.26 (2)°
Mr = 2167.26V = 1855.1 (9) Å3
Triclinic, P1Z = 1
a = 12.285 (4) ÅMo Kα radiation
b = 13.924 (3) ŵ = 1.97 mm1
c = 11.120 (3) ÅT = 298 K
α = 101.33 (3)°0.38 × 0.25 × 0.13 mm
β = 92.63 (2)°
Data collection top
Stoe Stadi-4
diffractometer
6530 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.000
Tmin = 0.608, Tmax = 0.8123 standard reflections every 60 min
8466 measured reflections intensity decay: 3.5%
8466 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.54 e Å3
8466 reflectionsΔρmin = 0.48 e Å3
484 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.31114 (4)0.30484 (4)0.87853 (4)0.02592 (12)
Co20.00000.50000.50000.03012 (17)
V10.43110 (5)0.64568 (4)0.77823 (5)0.02300 (13)
V20.39343 (4)0.47395 (4)0.56571 (5)0.01730 (12)
V30.36978 (5)0.30219 (4)0.34504 (5)0.02259 (13)
V40.37745 (5)0.51807 (4)0.29388 (5)0.01901 (12)
V50.40608 (5)0.68761 (4)0.51317 (5)0.02013 (13)
Oh10.51110 (18)0.57235 (16)0.59670 (19)0.0175 (4)
Oc20.32781 (18)0.56617 (16)0.4667 (2)0.0191 (5)
Oc30.49139 (18)0.60872 (16)0.3723 (2)0.0185 (5)
Ob40.33745 (19)0.52932 (18)0.6983 (2)0.0234 (5)
Ob50.31274 (19)0.38127 (17)0.5035 (2)0.0220 (5)
Ob60.4584 (2)0.27650 (17)0.2073 (2)0.0246 (5)
Ob70.3507 (2)0.71057 (17)0.6664 (2)0.0240 (5)
Ob80.5266 (2)0.75635 (17)0.5633 (2)0.0246 (5)
Ob90.29800 (19)0.41297 (17)0.2800 (2)0.0224 (5)
Ob100.4762 (2)0.46024 (17)0.1766 (2)0.0225 (5)
Ot110.3642 (2)0.6858 (2)0.9019 (2)0.0354 (6)
Ot120.2807 (2)0.2243 (2)0.3102 (3)0.0348 (6)
Ot130.3006 (2)0.59158 (19)0.2240 (2)0.0295 (6)
Ot140.3286 (2)0.75966 (18)0.4429 (2)0.0314 (6)
O150.0226 (2)0.2343 (2)0.6418 (3)0.0362 (6)
O160.1753 (3)0.0720 (2)0.5416 (3)0.0443 (7)
O170.3944 (3)0.0493 (2)0.6500 (3)0.0418 (7)
O180.3647 (2)0.01171 (19)0.8973 (3)0.0373 (7)
O190.1481 (3)0.0579 (2)0.9931 (3)0.0466 (8)
O200.0007 (3)0.2010 (2)0.8917 (3)0.0466 (8)
C10.0026 (4)0.1562 (3)0.5442 (4)0.0429 (10)
H1a0.06140.17910.49260.051*
H1b0.02670.10260.57740.051*
C20.0971 (4)0.1207 (4)0.4700 (4)0.0464 (11)
H2a0.07790.07570.39560.056*
H2b0.12760.17600.44720.056*
C30.2732 (4)0.0350 (4)0.4751 (4)0.0513 (12)
H3a0.30730.08930.45420.062*
H3b0.25490.00890.39950.062*
C40.3511 (4)0.0189 (3)0.5518 (4)0.0445 (11)
H4a0.31330.06580.58410.053*
H4b0.41010.05480.50170.053*
C50.4749 (4)0.0026 (3)0.7221 (4)0.0432 (10)
H5a0.51750.05260.76960.052*
H5b0.52420.04230.66710.052*
C60.4304 (4)0.0533 (3)0.8083 (4)0.0441 (11)
H6a0.38680.10320.76240.053*
H6b0.49040.08600.84920.053*
C70.3198 (4)0.0381 (3)0.9807 (4)0.0455 (11)
H7a0.37820.06541.02930.055*
H7b0.28100.09180.93560.055*
C80.2432 (4)0.0321 (4)1.0630 (4)0.0492 (12)
H8a0.22260.00201.12910.059*
H8b0.27870.09071.09860.059*
C90.0740 (5)0.1307 (4)1.0620 (5)0.0560 (13)
H9a0.10840.19141.08780.067*
H9b0.05340.10881.13470.067*
C100.0260 (4)0.1479 (4)0.9830 (5)0.0585 (14)
H10a0.05140.08520.94370.070*
H10b0.08410.18501.03360.070*
C110.0911 (4)0.2072 (4)0.8061 (5)0.0466 (11)
H11a0.15730.23340.85020.056*
H11b0.10240.14210.75990.056*
C120.0681 (4)0.2728 (3)0.7200 (5)0.0466 (11)
H12a0.13310.28260.66910.056*
H12b0.05300.33650.76750.056*
OW10.4127 (2)0.20530 (19)0.9599 (2)0.0361 (7)
H21a0.39810.14690.95510.054*
H21b0.43000.22281.04330.054*
OW20.4187 (3)0.4105 (2)0.9349 (3)0.0458 (8)
H22a0.45370.45430.89850.069*
H22b0.44230.43401.00950.069*
OW30.3852 (3)0.2587 (2)0.7107 (3)0.0448 (8)
H23a0.42060.28840.67550.067*
H23b0.40500.19860.68410.067*
OW40.2260 (3)0.3467 (2)1.0456 (3)0.0462 (8)
H24a0.15220.35081.04620.069*
H24b0.24260.36211.11180.069*
OW50.2109 (2)0.1936 (2)0.8120 (3)0.0362 (6)
H25a0.14870.19790.83910.054*
H25b0.23820.16510.74120.054*
OW60.1980 (3)0.4101 (2)0.8226 (3)0.0454 (8)
H26a0.18250.42820.76070.068*
H26b0.21560.46590.86490.068*
OW70.1128 (2)0.3962 (2)0.4609 (3)0.0436 (7)
H27a0.16940.41000.48600.065*
H27b0.09560.35820.38310.065*
OW80.1059 (2)0.3979 (2)0.5789 (3)0.0367 (7)
H28a0.18010.37040.54050.055*
H28b0.08750.34660.60680.055*
OW90.0770 (2)0.4511 (3)0.3320 (3)0.0531 (9)
H29a0.04070.39760.28490.080*
H29b0.15210.43030.34590.080*
OW100.1354 (3)0.2350 (3)0.2717 (3)0.0539 (9)
H30a0.20250.24560.28250.081*
H30b0.13450.17050.26320.081*
OW110.2041 (3)0.5888 (3)0.9867 (3)0.0573 (9)
H31a0.14950.56891.02160.086*
H31b0.23460.63450.96830.086*
OW120.1076 (3)0.0280 (3)0.7380 (3)0.0569 (9)
H32a0.13680.00040.69250.085*
H32b0.12550.00460.80310.085*
OW130.3601 (4)0.1960 (4)0.8133 (5)0.0902 (14)
OW140.0134 (6)0.4281 (7)0.0727 (8)0.066 (2)0.50
OW150.0164 (8)0.3598 (8)0.1389 (10)0.105 (4)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0327 (3)0.0265 (3)0.0196 (2)0.0074 (2)0.0031 (2)0.00553 (18)
Co20.0175 (3)0.0400 (4)0.0345 (4)0.0012 (3)0.0024 (3)0.0115 (3)
V10.0259 (3)0.0244 (3)0.0172 (3)0.0006 (2)0.0028 (2)0.0015 (2)
V20.0155 (3)0.0208 (3)0.0164 (3)0.0025 (2)0.0015 (2)0.0049 (2)
V30.0233 (3)0.0221 (3)0.0220 (3)0.0053 (2)0.0024 (2)0.0026 (2)
V40.0196 (3)0.0217 (3)0.0155 (3)0.0011 (2)0.0022 (2)0.0041 (2)
V50.0225 (3)0.0183 (3)0.0187 (3)0.0013 (2)0.0009 (2)0.0035 (2)
Oh10.0173 (11)0.0201 (11)0.0150 (10)0.0013 (9)0.0010 (9)0.0036 (8)
Oc20.0165 (11)0.0226 (11)0.0181 (11)0.0002 (9)0.0010 (9)0.0045 (9)
Oc30.0194 (11)0.0196 (11)0.0169 (11)0.0007 (9)0.0001 (9)0.0053 (9)
Ob40.0228 (12)0.0283 (13)0.0198 (12)0.0018 (10)0.0032 (10)0.0057 (10)
Ob50.0186 (12)0.0262 (12)0.0225 (12)0.0050 (9)0.0014 (9)0.0064 (10)
Ob60.0293 (13)0.0238 (12)0.0188 (11)0.0026 (10)0.0036 (10)0.0006 (9)
Ob70.0247 (13)0.0235 (12)0.0206 (12)0.0037 (10)0.0011 (10)0.0004 (9)
Ob80.0274 (13)0.0198 (12)0.0269 (13)0.0034 (10)0.0017 (10)0.0055 (10)
Ob90.0219 (12)0.0241 (12)0.0211 (12)0.0040 (10)0.0039 (10)0.0040 (9)
Ob100.0262 (13)0.0273 (12)0.0142 (11)0.0031 (10)0.0004 (9)0.0042 (9)
Ot110.0396 (16)0.0416 (16)0.0219 (13)0.0045 (13)0.0085 (12)0.0008 (11)
Ot120.0380 (16)0.0311 (14)0.0363 (15)0.0141 (12)0.0060 (12)0.0048 (12)
Ot130.0318 (14)0.0327 (14)0.0242 (13)0.0021 (11)0.0053 (11)0.0103 (11)
Ot140.0356 (15)0.0241 (13)0.0333 (14)0.0035 (11)0.0058 (12)0.0076 (11)
O150.0309 (15)0.0400 (16)0.0387 (16)0.0020 (12)0.0014 (12)0.0105 (12)
O160.0446 (18)0.0542 (19)0.0345 (16)0.0080 (15)0.0065 (14)0.0148 (14)
O170.0526 (19)0.0294 (15)0.0417 (17)0.0006 (13)0.0040 (15)0.0041 (12)
O180.0472 (18)0.0258 (14)0.0391 (16)0.0043 (12)0.0038 (13)0.0059 (12)
O190.0452 (19)0.062 (2)0.0352 (16)0.0030 (16)0.0038 (14)0.0163 (15)
O200.0359 (17)0.057 (2)0.0532 (19)0.0079 (15)0.0052 (15)0.0225 (16)
C10.035 (2)0.048 (3)0.045 (3)0.0040 (19)0.008 (2)0.010 (2)
C20.054 (3)0.053 (3)0.031 (2)0.001 (2)0.004 (2)0.011 (2)
C30.057 (3)0.057 (3)0.038 (2)0.005 (2)0.013 (2)0.006 (2)
C40.045 (3)0.037 (2)0.046 (3)0.002 (2)0.005 (2)0.0036 (19)
C50.037 (2)0.044 (2)0.046 (3)0.0017 (19)0.004 (2)0.003 (2)
C60.051 (3)0.029 (2)0.047 (3)0.0063 (19)0.006 (2)0.0023 (18)
C70.052 (3)0.041 (2)0.049 (3)0.011 (2)0.012 (2)0.022 (2)
C80.052 (3)0.065 (3)0.035 (2)0.013 (2)0.001 (2)0.019 (2)
C90.064 (3)0.061 (3)0.048 (3)0.003 (3)0.018 (3)0.020 (2)
C100.049 (3)0.067 (3)0.068 (3)0.001 (3)0.023 (3)0.033 (3)
C110.032 (2)0.053 (3)0.057 (3)0.006 (2)0.010 (2)0.013 (2)
C120.039 (3)0.043 (3)0.058 (3)0.007 (2)0.007 (2)0.015 (2)
Ow10.0514 (18)0.0276 (14)0.0297 (14)0.0074 (13)0.0107 (13)0.0074 (11)
Ow20.069 (2)0.0496 (18)0.0270 (14)0.0373 (16)0.0146 (14)0.0145 (13)
Ow30.069 (2)0.0338 (16)0.0351 (16)0.0069 (15)0.0227 (15)0.0102 (12)
Ow40.0440 (18)0.070 (2)0.0213 (14)0.0084 (16)0.0022 (13)0.0002 (14)
Ow50.0336 (15)0.0415 (16)0.0347 (15)0.0152 (13)0.0033 (12)0.0035 (12)
Ow60.058 (2)0.0402 (17)0.0358 (16)0.0011 (15)0.0139 (15)0.0072 (13)
Ow70.0206 (14)0.0483 (18)0.060 (2)0.0059 (13)0.0052 (14)0.0031 (15)
Ow80.0230 (14)0.0430 (16)0.0480 (17)0.0001 (12)0.0069 (12)0.0185 (14)
Ow90.0226 (15)0.091 (3)0.0422 (18)0.0018 (16)0.0047 (13)0.0077 (17)
Ow100.0336 (17)0.061 (2)0.063 (2)0.0019 (15)0.0100 (16)0.0018 (17)
Ow110.060 (2)0.059 (2)0.054 (2)0.0082 (18)0.0022 (18)0.0111 (17)
Ow120.066 (2)0.054 (2)0.051 (2)0.0153 (18)0.0008 (18)0.0078 (16)
Ow130.082 (3)0.107 (4)0.094 (3)0.028 (3)0.003 (3)0.041 (3)
Ow140.041 (4)0.091 (6)0.069 (5)0.012 (4)0.004 (4)0.033 (5)
Ow150.073 (6)0.107 (8)0.102 (8)0.008 (6)0.030 (6)0.044 (6)
Geometric parameters (Å, º) top
V1—V23.068 (1)O20—C101.429 (5)
V1—V3i3.073 (1)O20—C111.437 (6)
V1—V4i3.123 (1)O15—C121.439 (5)
V1—V53.111 (1)C1—C21.495 (6)
V2—V33.097 (1)C1—H1a0.9700
V2—V43.194 (1)C1—H1b0.9700
V2—V53.162 (1)C2—H2a0.9700
V2—V2i3.266 (1)C2—H2b0.9700
V2—V4i3.157 (1)C3—C41.497 (7)
V3—V5i3.111 (1)C3—H3a0.9700
V3—V43.178 (1)C3—H3b0.9700
V4—V53.077 (1)C4—H4a0.9700
Co1—Ow12.083 (3)C4—H4b0.9700
Co1—Ow22.062 (3)C5—C61.500 (6)
Co1—Ow32.072 (3)C5—H5a0.9700
Co1—Ow42.125 (3)C5—H5b0.9700
Co1—Ow52.076 (3)C6—H6a0.9700
Co1—Ow62.083 (3)C6—H6b0.9700
Co2—Ow72.073 (3)C7—C81.491 (7)
Co2—Ow82.122 (3)C7—H7a0.9700
Co2—Ow92.093 (3)C7—H7b0.9700
V1—Oh12.292 (2)C8—H8a0.9700
V1—Ob42.110 (3)C8—H8b0.9700
V1—Ob6i1.803 (3)C9—C101.504 (8)
V1—Ob71.868 (2)C9—H9a0.9700
V1—Ob10i1.904 (2)C9—H9b0.9700
V1—Ot111.609 (3)C10—H10a0.9700
V2—Oh1i2.154 (2)C10—H10b0.9700
V2—Oh12.062 (2)C11—C121.501 (6)
V2—Oc21.944 (2)C11—H11a0.9700
V2—Oc3i1.923 (2)C11—H11b0.9700
V2—Ob41.668 (2)C12—H12a0.9700
V2—Ob51.723 (2)C12—H12b0.9700
V3—Oh1i2.365 (2)Ow1—H21a0.8413
V3—Ob52.002 (2)Ow1—H21b0.9317
V3—Ob61.876 (3)Ow2—H22a0.9419
V3—Ob8i1.823 (3)Ow2—H22b0.8771
V3—Ob91.946 (2)Ow3—H23a0.7928
V3—Ot121.599 (3)Ow3—H23b0.8457
V4—Oh1i2.246 (2)Ow4—H24a0.9026
V4—Oc22.008 (2)Ow4—H24b0.7500
V4—Oc32.030 (2)Ow5—H25a0.8267
V4—Ob91.817 (2)Ow5—H25b0.8746
V4—Ob101.833 (2)Ow6—H26a0.7869
V4—Ot131.611 (2)Ow6—H26b0.8683
V5—Oh12.273 (2)Ow7—H27a0.7537
V5—Oc21.997 (2)Ow7—H27b0.9419
V5—Oc32.001 (2)Ow8—H28a1.0302
V5—Ob71.822 (2)Ow8—H28b0.8841
V5—Ob81.848 (3)Ow9—H29a0.9588
V5—Ot141.604 (3)Ow9—H29b0.9544
O15—C11.425 (5)Ow10—H30a0.8324
O16—C21.425 (5)Ow10—H30b0.8836
O16—C31.437 (5)Ow11—H31a0.8832
O17—C41.421 (5)Ow11—H31b0.8323
O17—C51.429 (5)Ow12—H32a0.8155
O18—C61.423 (5)Ow12—H32b0.8088
O18—C71.422 (5)Ow13—OT14ii3.080 (5)
O19—C81.429 (6)Ow14—OW151.40 (1)
O19—C91.420 (6)
V2—V1—V3i91.93 (3)Ot13—V4—Oc3100.19 (12)
V2—V1—V561.55 (3)Ob9—V4—Oc3154.82 (10)
V3i—V1—V560.41 (3)Ob10—V4—Oc388.75 (10)
V2—V1—V4i61.29 (3)Oc2—V4—Oc375.89 (10)
V3i—V1—V4i61.71 (3)Ot13—V4—Oh1i174.83 (11)
V5—V1—V4i92.39 (3)Ob9—V4—Oh1i81.31 (10)
V1—V2—V3176.35 (3)Ob10—V4—Oh1i80.08 (9)
V1—V2—V559.89 (3)Oc2—V4—Oh1i76.45 (9)
V3—V2—V5118.55 (3)Oc3—V4—Oh1i75.18 (9)
V1—V2—V4117.74 (3)Ot14—V5—Ob7103.85 (13)
V3—V2—V460.66 (3)Ot14—V5—Ob8103.91 (13)
V5—V2—V457.90 (3)Ob7—V5—Ob893.80 (11)
V1—V2—V2i88.57 (3)Ot14—V5—Oc299.47 (12)
V3—V2—V2i87.84 (3)Ob7—V5—Oc290.40 (11)
V5—V2—V2i59.59 (3)Ob8—V5—Oc2154.47 (10)
V4—V2—V2i58.49 (3)Ot14—V5—Oc399.98 (12)
V1—V2—V4ii94.80 (3)Ob7—V5—Oc3154.53 (10)
V3—V2—V4ii88.74 (3)Ob8—V5—Oc389.08 (11)
V5—V2—V4ii101.40 (2)Oc2—V5—Oc376.81 (10)
V4—V2—V4ii98.95 (3)Ot14—V5—Oh1173.96 (11)
V2i—V2—V4ii155.40 (2)Ob7—V5—Oh179.57 (10)
V1i—V3—V291.65 (3)Ob8—V5—Oh180.65 (10)
V1i—V3—V5i60.41 (3)Oc2—V5—Oh175.37 (9)
V2—V3—V5i61.95 (3)Oc3—V5—Oh175.94 (9)
V1i—V3—V459.92 (2)C1—O15—C12113.5 (3)
V2—V3—V461.18 (3)C2—O16—C3111.6 (3)
V5i—V3—V491.34 (3)C4—O17—C5112.2 (3)
V5—V4—V3118.67 (3)C7—O18—C6112.4 (3)
V5—V4—V260.53 (3)C9—O19—C8113.0 (4)
V3—V4—V258.16 (3)C10—O20—C11110.6 (4)
V4—V5—V3i119.20 (3)O15—C1—C2109.2 (4)
V4—V5—V1120.09 (3)O15—C1—H1a109.8
V3i—V5—V159.19 (3)C2—C1—H1a109.8
V4—V5—V261.58 (3)O15—C1—H1b109.8
V3i—V5—V289.46 (3)C2—C1—H1b109.8
V1—V5—V258.56 (3)H1a—C1—H1b108.3
Ow2—Co1—Ow392.14 (13)O16—C2—C1108.7 (4)
Ow2—Co1—Ow5175.83 (13)O16—C2—H2a109.9
Ow3—Co1—Ow583.89 (12)C1—C2—H2a109.9
Ow2—Co1—Ow190.06 (12)O16—C2—H2b109.9
Ow3—Co1—Ow192.59 (12)C1—C2—H2b109.9
Ow5—Co1—Ow188.87 (11)H2a—C2—H2b108.3
Ow2—Co1—Ow690.07 (13)O16—C3—C4109.8 (4)
Ow3—Co1—Ow696.07 (13)O16—C3—H3a109.7
Ow5—Co1—Ow691.60 (12)C4—C3—H3a109.7
Ow1—Co1—Ow6171.33 (12)O16—C3—H3b109.7
Ow2—Co1—Ow491.67 (13)C4—C3—H3b109.7
Ow3—Co1—Ow4176.07 (13)H3a—C3—H3b108.2
Ow5—Co1—Ow492.32 (12)O17—C4—C3109.6 (4)
Ow1—Co1—Ow488.36 (12)O17—C4—H4a109.8
Ow6—Co1—Ow482.96 (13)C3—C4—H4a109.8
Ow7—Co2—Ow9ii86.78 (14)O17—C4—H4b109.8
Ow7ii—Co2—Ow9ii93.22 (14)C3—C4—H4B109.8
Ow7—Co2—Ow993.22 (13)H4a—C4—H4b108.2
Ow7ii—Co2—Ow986.78 (14)O17—C5—C6115.2 (4)
Ow7—Co2—Ow888.83 (12)O17—C5—H5a108.5
Ow7ii—Co2—Ow891.17 (12)C6—C5—H5a108.5
Ow9ii—Co2—Ow890.06 (12)O17—C5—H5b108.5
Ow9—Co2—Ow889.94 (12)C6—C5—H5b108.5
Ow7—Co2—Ow8ii91.17 (12)H5a—C5—H5b107.5
Ow7ii—Co2—Ow8ii88.83 (12)O18—C6—C5110.2 (3)
Ow9ii—Co2—Ow8ii89.94 (12)O18—C6—H6a109.6
Ow9—Co2—Ow8ii90.06 (12)C5—C6—H6a109.6
Ot11—V1—Ob6i103.80 (14)O18—C6—H6b109.6
Ot11—V1—Ob7101.82 (13)C5—C6—H6b109.6
Ob6i—V1—Ob793.86 (11)H6a—C6—H6b108.1
Ot11—V1—Ob10i101.15 (13)O18—C7—C8109.6 (4)
Ob6i—V1—Ob10i92.46 (11)O18—C7—H7a109.8
Ob7—V1—Ob10i153.94 (10)C8—C7—H7a109.8
Ot11—V1—Ob499.13 (13)O18—C7—H7b109.8
Ob6i—V1—Ob4157.02 (10)C8—C7—H7b109.8
Ob7—V1—Ob482.86 (10)H7a—C7—H7b108.2
Ob10i—V1—Ob481.51 (10)O19—C8—C7109.0 (4)
Ot11—V1—Oh1172.42 (12)O19—C8—H8a109.9
Ob6i—V1—Oh183.74 (10)C7—C8—H8a109.9
Ob7—V1—Oh178.14 (9)O19—C8—H8b109.9
Ob10i—V1—Oh177.46 (9)C7—C8—H8b109.9
Ob4—V1—Oh173.32 (9)H8a—C8—H8b108.3
Ob4—V2—Ob5106.09 (12)O19—C9—C10108.8 (4)
Ob4—V2—Oc3i98.98 (11)O19—C9—H9a109.9
Ob5—V2—Oc3i96.37 (11)C10—C9—H9a109.9
Ob4—V2—Oc297.36 (11)O19—C9—H9b109.9
Ob5—V2—Oc295.15 (11)C10—C9—H9b109.9
Oc3i—V2—Oc2156.53 (10)H9a—C9—H9b108.3
Ob4—V2—Oh189.14 (11)O20—C10—C9110.0 (4)
Ob5—V2—Oh1164.73 (10)O20—C10—H10a109.7
Oc3i—V2—Oh181.92 (9)C9—C10—H10a109.7
Oc2—V2—Oh181.60 (9)O20—C10—H10b109.7
Ob4—V2—Oh1i167.56 (11)C9—C10—H10b109.7
Ob5—V2—Oh1i86.29 (10)H10a—C10—H10b108.2
Oc3i—V2—Oh1i80.42 (9)O20—C11—C12109.8 (4)
Oc2—V2—Oh1i80.00 (9)O20—C11—H11a109.7
Oh1—V2—Oh1i78.46 (10)C12—C11—H11a109.7
Ot12—V3—Ob8i104.40 (13)O20—C11—H11b109.7
Ot12—V3—Ob6103.47 (13)C12—C11—H11b109.7
Ob8i—V3—Ob692.58 (11)H11a—C11—H11b108.2
Ot12—V3—Ob9100.90 (13)O15—C12—C11113.5 (4)
Ob8i—V3—Ob9154.04 (11)O15—C12—H12a108.9
Ob6—V3—Ob987.11 (11)C11—C12—H12a108.9
Ot12—V3—Ob5101.17 (13)O15—C12—H12b108.9
Ob8i—V3—Ob586.93 (11)C11—C12—H12b108.9
Ob6—V3—Ob5154.66 (10)H12a—C12—H12b107.7
Ob9—V3—Ob582.53 (10)H21a—Ow1—H21b100.9
Ot12—V3—Oh1i175.00 (12)H22a—Ow2—H22b94.4
Ob8i—V3—Oh1i78.62 (9)H23a—Ow3—H23b105.7
Ob6—V3—Oh1i80.20 (9)H24a—Ow4—H24b104.0
Ob9—V3—Oh1i75.74 (9)H25a—Ow5—H25b132.0
Ob5—V3—Oh1i74.86 (9)H26a—Ow6—H26b97.2
Ot13—V4—Ob9102.86 (13)H27a—Ow7—H27b126.1
Ot13—V4—Ob10102.32 (12)H28a—Ow8—H28b101.2
Ob9—V4—Ob1096.07 (11)H29a—Ow9—H29b110.0
Ot13—V4—Oc2100.34 (12)H30a—Ow10—H30b94.6
Ob9—V4—Oc290.06 (10)H31a—Ow11—H31b149.5
Ob10—V4—Oc2154.54 (10)H32a—Ow12—H32b98.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
Ow1—H21a···O180.841.942.764 (4)165
Ow1—H21b···Ob6iii0.931.862.786 (4)172
Ow1—H21a···Ow50.842.832.912 (4)87
Ow2—H22b···Ob10iii0.881.862.719 (4)167
Ow2—H22a···Ob10i0.941.882.817 (4)179
Ow3—H23a···Oc3i0.792.042.813 (4)165
Ow3—H23b···O170.852.062.853 (4)157
Ow4—H24b···Ob9iii0.751.982.727 (4)173
Ow4—H24a···Ow14iii0.901.932.747 (8)150
Ow5—H25a···O200.831.952.771 (4)176
Ow5—H25a···O150.832.733.002 (4)101
Ow6—H26b···Ow110.871.962.788 (5)159
Ow6—H26a···Ow80.792.172.868 (4)148
Ow6—H26a···Ob40.792.673.048 (4)112
Ow7—H27a···Oc2ii0.752.022.766 (4)172
Ow7—H27b···Ow100.942.002.785 (5)140
Ow7—H27b···Ow90.942.733.028 (4)99
Ow7—H27b···Ow90.942.733.028 (4)99
Ow8—H28a···Ob51.031.732.686 (4)153
Ow8—H28b···O150.881.942.807 (4)168
Ow9—H29a···Ow150.961.742.557 (9)140
Ow9—H29a···Ow140.962.482.917 (9)108
Ow9—H29b···Ob90.951.942.780 (4)145
Ow10—H30a···Ob7ii0.831.942.757 (4)169
Ow10—H30b···Ow12iv0.881.982.850 (5)170
Ow11—H31a···Ow15ii0.882.642.75 (1)88
Ow11—H31a···Ow14ii0.882.222.744 (9)118
Ow11—H31b···Ot110.832.032.790 (5)151
Ow12—H32b···O190.812.112.895 (5)163
Ow12—H32a···O160.822.202.999 (5)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6]3[V10O28]·(C12H24O6)2·10H2O
Mr2167.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)12.285 (4), 13.924 (3), 11.120 (3)
α, β, γ (°)101.33 (3), 92.63 (2), 84.26 (2)
V3)1855.1 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.38 × 0.25 × 0.13
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.608, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
8466, 8466, 6530
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.08
No. of reflections8466
No. of parameters484
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.48

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97.

Selected bond lengths (Å) top
V1—Oh12.292 (2)V5—Oc21.997 (2)
V1—Ob42.110 (3)V5—Oc32.001 (2)
V1—Ob6i1.803 (3)V5—Ob71.822 (2)
V1—Ob71.868 (2)V5—Ob81.848 (3)
V1—Ob10i1.904 (2)V5—Ot141.604 (3)
V1—Ot111.609 (3)O15—C11.425 (5)
V2—Oh1i2.154 (2)O16—C21.425 (5)
V2—Oh12.062 (2)O16—C31.437 (5)
V2—Oc21.944 (2)O17—C41.421 (5)
V2—Oc3i1.923 (2)O17—C51.429 (5)
V2—Ob41.668 (2)O18—C61.423 (5)
V2—Ob51.723 (2)O18—C71.422 (5)
V3—Oh1i2.365 (2)O19—C81.429 (6)
V3—Ob52.002 (2)O19—C91.420 (6)
V3—Ob61.876 (3)O20—C101.429 (5)
V3—Ob8i1.823 (3)O20—C111.437 (6)
V3—Ob91.946 (2)O15—C121.439 (5)
V3—Ot121.599 (3)C1—C21.495 (6)
V4—Oh1i2.246 (2)C3—C41.497 (7)
V4—Oc22.008 (2)C5—C61.500 (6)
V4—Oc32.030 (2)C7—C81.491 (7)
V4—Ob91.817 (2)C9—C101.504 (8)
V4—Ob101.833 (2)C11—C121.501 (6)
V4—Ot131.611 (2)Ow13—OT14ii3.080 (5)
V5—Oh12.273 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
Ow1—H21a···O180.841.942.764 (4)165
Ow1—H21b···Ob6iii0.931.862.786 (4)172
Ow1—H21a···Ow50.842.832.912 (4)87
Ow2—H22b···Ob10iii0.881.862.719 (4)167
Ow2—H22a···Ob10i0.941.882.817 (4)179
Ow3—H23a···Oc3i0.792.042.813 (4)165
Ow3—H23b···O170.852.062.853 (4)157
Ow4—H24b···Ob9iii0.751.982.727 (4)173
Ow4—H24a···Ow14iii0.901.932.747 (8)150
Ow5—H25a···O200.831.952.771 (4)176
Ow5—H25a···O150.832.733.002 (4)101
Ow6—H26b···Ow110.871.962.788 (5)159
Ow6—H26a···Ow80.792.172.868 (4)148
Ow6—H26a···Ob40.792.673.048 (4)112
Ow7—H27a···Oc2ii0.752.022.766 (4)172
Ow7—H27b···Ow100.942.002.785 (5)140
Ow7—H27b···Ow90.942.733.028 (4)99
Ow7—H27b···Ow90.942.733.028 (4)99
Ow8—H28a···Ob51.031.732.686 (4)153
Ow8—H28b···O150.881.942.807 (4)168
Ow9—H29a···Ow150.961.742.557 (9)140
Ow9—H29a···Ow140.962.482.917 (9)108
Ow9—H29b···Ob90.951.942.780 (4)145
Ow10—H30a···Ob7ii0.831.942.757 (4)169
Ow10—H30b···Ow12iv0.881.982.850 (5)170
Ow11—H31a···Ow15ii0.882.642.75 (1)88
Ow11—H31a···Ow14ii0.882.222.744 (9)118
Ow11—H31b···Ot110.832.032.790 (5)151
Ow12—H32b···O190.812.112.895 (5)163
Ow12—H32a···O160.822.202.999 (5)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds