Download citation
Download citation
link to html
In the title compound, [Ni2(C52H50N4O2)(C2H6O2)](ClO4)2·2H2O, the two Ni atoms are bridged by two O atoms from the Robson macrocyclic ligand, forming a parallelogram, which has a twofold axis. The macrocyclic plane is formed from an Ni2O2 center and four N atoms from the ligand. Above the macrocyclic plane an ethyl­ene glycol mol­ecule bridges the two Ni atoms, and the coordination geometry around each Ni atom is square pyramidal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012868/ob6245sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012868/ob6245Isup2.hkl
Contains datablock I

CCDC reference: 217382

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.047
  • wR factor = 0.159
  • Data-to-parameter ratio = 15.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ......................... 7.00 Perc. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 5296 Count of symmetry unique reflns 3338 Completeness (_total/calc) 158.66% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1958 Fraction of Friedel pairs measured 0.587 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

It is well known that dinuclear cores exist at the active sites of many metalloenzymes and play an essential role in biological systems (Furuta et al., 1999; Arimura et al., 2001). The two caves of the Robson macrocyclic Schiff base ligand, RobsonH2, can accomodate two metal ions, forming a planar complex [Tandon, 1992; RobsonH2 = 10,21-di-tert-butyl-4,5,15,16-tetraphenyl-3,6,14,17- tetraazatricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12 (24),13,17,19,21- decaene-23,24-diol]. In the present study, the chiral RobsonH2 ligand was derived from the condensation of 2,6-diformyl-o-methylphenol and 1(S),2(S)-diphenyl-1,2-diaminoethane in the presence of NaOH, and the title dinuclear NiII compound, (I), was synthesized in order to investigate its biochemical effect. In this paper, the crystal structure of (I) is reported.

The two Ni atoms are bridged by O1 and O1i atoms, forminga parallelogram (Fig. 1 and Table 1). There are also four N atoms from the ligand coordinated to the two Ni atoms in a macrocyclic plane. In the plane above, two O atoms from a glycol molecule coordinate to two Ni atoms in the axial directions. The coordination geometry around each Ni atom is square pyramidal. In the basal planes of the square pyramids, two Ni atoms are exposed. This may be the catalyze active site of the complex. There are O—H···O intermolecular hydrogen bonds (Fig. 2 and Table 2).

Experimental top

To a solution of 2,6-diformyl-4-tert-butylphenol (1 mmol) in 5 ml e thanol at room temperature, NaOH ethanol solution (5 ml, 0.2M) was added. This mixture was stirred for 1 h and a yellow precipitate appeared. 1(S),2(S)-Diphenyl-1,2-diaminoethane (1 mmol) dissolved in ethanol was then added and the resulting mixture stirred at room temperature for 0.5 h. After that, a solution of Ni2(ClO4)2 in ethanol (5 ml, 0.2 M) was added and stirring continued for another 2 h. The reaction mixture was filtered and the precipitates obtained were washed with ethanol and dried in a vacuum. Crystals of (I) were grown from an ethanol–ethylene glycol solution.

Refinement top

There are two independent water molecules of crystallization. One, O3, lies on a twofold axis, while the other, O4, shows a positional disorder over two sites with 50% probability each. The positions of all H atoms were fixed geometrically and distances to H atoms were set by the program.

Computing details top

Data collection: CAD-4 SDP/VAX (Enraf-Nonius, 1989); cell refinement: CAD-4 SDP/VAX; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis. The dashed lines indicate the hydrogen bonds.
(R,R,R,R)10,21-Di-tert-butyl-4,5,15,16-tetraphenyl-3,6,14,17-tetraaza -tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12 (24),13,17, 19,21-decaene-23,24-diol ethane-1,2-diol dinuclear Nickel(II) diperchlorate bishydrate complex top
Crystal data top
[Ni2(C52H50N4O2)(C2H6O2)](ClO4)2·2H2ODx = 1.366 Mg m3
Mr = 1177.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 25 reflections
Hall symbol: P 4abw 2nwθ = 2.2–16.7°
a = 11.536 (3) ŵ = 0.82 mm1
c = 43.015 (3) ÅT = 293 K
V = 5724 (2) Å3Block, orange
Z = 40.35 × 0.29 × 0.27 mm
F(000) = 2456
Data collection top
Siemens P4
diffractometer
4763 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ω scansh = 913
Absorption correction: ψ scan
(XPREP; Bruker, 2000)
k = 1413
Tmin = 0.750, Tmax = 0.799l = 5251
8048 measured reflections3 standard reflections every 97 reflections
5296 independent reflections intensity decay: 4.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.105P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5296 reflectionsΔρmax = 0.49 e Å3
348 parametersΔρmin = 0.58 e Å3
0 restraintsAbsolute structure: Flack (1983), 2037 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ni2(C52H50N4O2)(C2H6O2)](ClO4)2·2H2OZ = 4
Mr = 1177.38Mo Kα radiation
Tetragonal, P41212µ = 0.82 mm1
a = 11.536 (3) ÅT = 293 K
c = 43.015 (3) Å0.35 × 0.29 × 0.27 mm
V = 5724 (2) Å3
Data collection top
Siemens P4
diffractometer
4763 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XPREP; Bruker, 2000)
Rint = 0.011
Tmin = 0.750, Tmax = 0.7993 standard reflections every 97 reflections
8048 measured reflections intensity decay: 4.0%
5296 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.159Δρmax = 0.49 e Å3
S = 1.09Δρmin = 0.58 e Å3
5296 reflectionsAbsolute structure: Flack (1983), 2037 Friedel pairs
348 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.61132 (6)0.47418 (6)0.021273 (14)0.0605 (2)
C10.4452 (4)0.6438 (3)0.04607 (8)0.0429 (8)
C20.3486 (3)0.7116 (3)0.03981 (8)0.0399 (8)
C30.2930 (3)0.7643 (3)0.06624 (8)0.0420 (8)
H3A0.23120.81450.06270.050*
C40.3248 (4)0.7453 (3)0.09515 (8)0.0433 (8)
C50.4194 (3)0.6655 (3)0.10038 (8)0.0410 (8)
H5A0.44040.64750.12070.049*
C60.4813 (3)0.6138 (3)0.07542 (8)0.0406 (8)
C70.5714 (3)0.5253 (3)0.08392 (7)0.0393 (7)
H7A0.58740.51340.10490.047*
C80.7258 (4)0.3862 (4)0.07330 (8)0.0455 (9)
H8A0.79800.43090.07220.055*
C90.7313 (4)0.2885 (4)0.04769 (8)0.0446 (9)
H9A0.66710.23510.05180.053*
C100.7431 (4)0.3035 (4)0.01101 (8)0.0455 (9)
H10A0.79100.23600.00850.055*
C110.2621 (4)0.8043 (4)0.12367 (9)0.0500 (10)
C120.1701 (4)0.8873 (4)0.11299 (9)0.0518 (10)
H12A0.13380.92230.13070.078*
H12B0.11310.84630.10110.078*
H12C0.20470.94650.10030.078*
C130.3603 (4)0.8734 (4)0.14004 (10)0.0557 (11)
H13A0.32930.91270.15790.084*
H13B0.39200.92920.12580.084*
H13C0.42020.82100.14650.084*
C140.2186 (4)0.7150 (4)0.14649 (10)0.0564 (10)
H14A0.18120.75340.16360.085*
H14B0.28270.67020.15410.085*
H14C0.16420.66480.13630.085*
C150.7160 (4)0.3381 (4)0.10516 (9)0.0483 (9)
C160.8023 (4)0.3690 (4)0.12664 (10)0.0557 (11)
H16A0.86060.42100.12120.067*
C170.7985 (4)0.3175 (4)0.15773 (10)0.0566 (11)
H17A0.85370.33660.17260.068*
C180.7126 (4)0.2416 (4)0.16418 (10)0.0595 (12)
H18A0.70940.20810.18380.071*
C190.6289 (4)0.2122 (4)0.14241 (9)0.0560 (11)
H19A0.57120.15850.14690.067*
C200.6344 (4)0.2635 (4)0.11495 (9)0.0537 (10)
H20A0.57560.24610.10090.064*
C210.8404 (4)0.2209 (4)0.05109 (8)0.0455 (9)
C220.9477 (4)0.2652 (4)0.03869 (9)0.0489 (9)
H22A0.95200.34020.03090.059*
C231.0483 (4)0.1908 (4)0.03869 (10)0.0549 (10)
H23A1.11800.21500.03000.066*
C241.0378 (4)0.0852 (4)0.05163 (10)0.0531 (10)
H24A1.10260.03730.05250.064*
C250.9300 (4)0.0440 (4)0.06418 (10)0.0552 (10)
H25A0.92590.02950.07300.066*
C260.8364 (4)0.1103 (4)0.06325 (9)0.0489 (9)
H26A0.76670.08180.07090.059*
C270.3476 (5)0.3592 (5)0.01754 (12)0.0668 (13)
H27A0.30140.29230.02230.080*
H27B0.31560.42600.02770.080*
N10.7087 (3)0.3420 (3)0.01752 (7)0.0436 (7)
N20.6252 (3)0.4679 (3)0.06464 (7)0.0428 (7)
O10.5006 (2)0.5959 (2)0.02063 (6)0.0464 (6)
O20.4579 (3)0.3417 (3)0.02603 (8)0.0645 (9)
H2A0.48370.27150.01570.077*
Cl10.47318 (11)0.03186 (12)0.03666 (3)0.0616 (3)
O110.5058 (3)0.0492 (3)0.06532 (8)0.0640 (9)
O120.5367 (3)0.0787 (3)0.02955 (7)0.0638 (9)
O130.3482 (3)0.0249 (3)0.03502 (7)0.0640 (9)
O140.5133 (3)0.1183 (3)0.00996 (8)0.0646 (9)
O40.9711 (7)0.6489 (6)0.03078 (15)0.0647 (17)0.50
H4A1.02560.69830.02940.097*0.50
H4C0.99070.58710.02140.097*0.50
O30.7495 (4)0.7495 (4)0.00000.0728 (14)
H3B0.81450.75540.00920.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0673 (4)0.0686 (4)0.0455 (3)0.0253 (3)0.0011 (3)0.0033 (3)
C10.057 (2)0.046 (2)0.0264 (17)0.0168 (16)0.0019 (15)0.0046 (14)
C20.0479 (19)0.048 (2)0.0241 (16)0.0133 (16)0.0015 (14)0.0025 (14)
C30.049 (2)0.048 (2)0.0292 (17)0.0133 (16)0.0015 (15)0.0049 (14)
C40.052 (2)0.046 (2)0.0317 (17)0.0126 (16)0.0024 (15)0.0030 (15)
C50.051 (2)0.0462 (19)0.0262 (16)0.0136 (15)0.0031 (14)0.0000 (14)
C60.0502 (19)0.0437 (18)0.0280 (16)0.0117 (15)0.0015 (14)0.0040 (14)
C70.0477 (19)0.0479 (18)0.0221 (15)0.0106 (16)0.0009 (13)0.0027 (14)
C80.056 (2)0.056 (2)0.0241 (16)0.0206 (19)0.0027 (15)0.0018 (15)
C90.054 (2)0.051 (2)0.0279 (17)0.0147 (17)0.0014 (15)0.0005 (15)
C100.058 (2)0.055 (2)0.0228 (16)0.0185 (18)0.0027 (15)0.0004 (14)
C110.058 (2)0.053 (2)0.039 (2)0.0174 (19)0.0012 (17)0.0045 (17)
C120.062 (2)0.063 (2)0.0303 (18)0.017 (2)0.0026 (17)0.0099 (18)
C130.065 (3)0.062 (3)0.040 (2)0.013 (2)0.0047 (19)0.0132 (19)
C140.057 (2)0.065 (3)0.047 (2)0.010 (2)0.0034 (19)0.003 (2)
C150.060 (2)0.052 (2)0.0329 (19)0.0184 (19)0.0004 (17)0.0009 (16)
C160.065 (3)0.064 (3)0.038 (2)0.028 (2)0.0014 (18)0.0004 (18)
C170.069 (3)0.063 (3)0.038 (2)0.022 (2)0.0052 (19)0.0034 (18)
C180.078 (3)0.065 (3)0.036 (2)0.027 (2)0.000 (2)0.0041 (19)
C190.071 (3)0.064 (3)0.033 (2)0.020 (2)0.0017 (19)0.0033 (17)
C200.072 (3)0.056 (2)0.0337 (19)0.022 (2)0.0004 (18)0.0027 (17)
C210.051 (2)0.054 (2)0.0315 (18)0.0133 (17)0.0024 (15)0.0022 (16)
C220.054 (2)0.058 (2)0.0342 (19)0.0127 (18)0.0007 (16)0.0026 (16)
C230.064 (3)0.061 (3)0.039 (2)0.017 (2)0.0062 (19)0.0027 (18)
C240.056 (2)0.063 (3)0.040 (2)0.012 (2)0.0044 (17)0.0030 (17)
C250.061 (2)0.062 (3)0.042 (2)0.016 (2)0.0078 (18)0.0042 (19)
C260.054 (2)0.057 (2)0.0364 (19)0.0140 (19)0.0042 (16)0.0010 (18)
C270.072 (3)0.071 (3)0.057 (3)0.027 (3)0.004 (2)0.005 (2)
N10.0531 (18)0.0517 (17)0.0260 (14)0.0157 (14)0.0035 (13)0.0010 (13)
N20.0551 (18)0.0498 (17)0.0235 (13)0.0156 (15)0.0031 (12)0.0018 (12)
O10.0528 (15)0.0567 (15)0.0297 (12)0.0238 (12)0.0019 (11)0.0013 (11)
O20.067 (2)0.075 (2)0.0520 (18)0.0257 (17)0.0014 (15)0.0071 (15)
Cl10.0683 (7)0.0699 (7)0.0466 (6)0.0244 (6)0.0021 (5)0.0032 (5)
O110.071 (2)0.072 (2)0.0489 (17)0.0274 (17)0.0021 (15)0.0000 (15)
O120.070 (2)0.073 (2)0.0476 (17)0.0220 (17)0.0018 (15)0.0047 (14)
O130.071 (2)0.072 (2)0.0489 (17)0.0274 (17)0.0021 (14)0.0001 (16)
O140.072 (2)0.071 (2)0.0502 (17)0.0241 (17)0.0019 (15)0.0015 (15)
O40.084 (5)0.061 (4)0.049 (4)0.010 (3)0.002 (3)0.001 (3)
O30.085 (2)0.085 (2)0.049 (2)0.010 (3)0.0013 (16)0.0013 (16)
Geometric parameters (Å, º) top
Ni1—O1i1.837 (3)C14—H14A0.9600
Ni1—N21.874 (3)C14—H14B0.9600
Ni1—O11.899 (3)C14—H14C0.9600
Ni1—N11.901 (3)C15—C201.343 (7)
Ni1—O22.347 (4)C15—C161.404 (6)
Ni1—Ni1i2.8905 (12)C16—C171.464 (6)
C1—C61.374 (5)C16—H16A0.9300
C1—O11.382 (4)C17—C181.352 (7)
C1—C21.388 (5)C17—H17A0.9300
C2—C10i1.392 (5)C18—C191.386 (7)
C2—C31.440 (5)C18—H18A0.9300
C3—C41.315 (5)C19—C201.323 (6)
C3—H3A0.9300C19—H19A0.9300
C4—C51.445 (5)C20—H20A0.9300
C4—C111.578 (5)C21—C261.379 (6)
C5—C61.421 (5)C21—C221.441 (6)
C5—H5A0.9300C22—C231.444 (6)
C6—C71.502 (5)C22—H22A0.9300
C7—N21.230 (5)C23—C241.344 (7)
C7—H7A0.9300C23—H23A0.9300
C8—C151.483 (5)C24—C251.437 (7)
C8—N21.541 (5)C24—H24A0.9300
C8—C91.578 (5)C25—C261.323 (6)
C8—H8A0.9800C25—H25A0.9300
C9—N11.460 (5)C26—H26A0.9300
C9—C211.488 (5)C27—O21.339 (6)
C9—H9A0.9800C27—C27i1.520 (10)
C10—N11.364 (5)C27—H27A0.9599
C10—C2i1.392 (5)C27—H27B0.9600
C10—H10A0.9599O1—Ni1i1.837 (3)
C11—C121.502 (6)O2—H2A0.9700
C11—C141.509 (7)Cl1—O111.304 (4)
C11—C131.554 (7)Cl1—O131.445 (4)
C12—H12A0.9600Cl1—O121.503 (3)
C12—H12B0.9600Cl1—O141.589 (4)
C12—H12C0.9600O4—H4A0.8500
C13—H13A0.9600O4—H4C0.8501
C13—H13B0.9600O3—H3B0.8501
C13—H13C0.9600
O1i—Ni1—N2172.65 (13)H13B—C13—H13C109.5
O1i—Ni1—O178.35 (12)C11—C14—H14A109.5
N2—Ni1—O195.77 (12)C11—C14—H14B109.5
O1i—Ni1—N196.12 (12)H14A—C14—H14B109.5
N2—Ni1—N190.18 (13)C11—C14—H14C109.5
O1—Ni1—N1171.78 (14)H14A—C14—H14C109.5
O1i—Ni1—O296.92 (13)H14B—C14—H14C109.5
N2—Ni1—O287.26 (14)C20—C15—C16117.0 (4)
O1—Ni1—O288.59 (12)C20—C15—C8125.7 (4)
N1—Ni1—O286.02 (14)C16—C15—C8117.3 (4)
O1i—Ni1—Ni1i40.09 (8)C15—C16—C17118.5 (5)
N2—Ni1—Ni1i134.29 (10)C15—C16—H16A120.8
O1—Ni1—Ni1i38.53 (8)C17—C16—H16A120.8
N1—Ni1—Ni1i135.13 (10)C18—C17—C16118.2 (4)
O2—Ni1—Ni1i89.93 (8)C18—C17—H17A120.9
C6—C1—O1119.1 (3)C16—C17—H17A120.9
C6—C1—C2124.3 (3)C17—C18—C19122.0 (4)
O1—C1—C2116.3 (3)C17—C18—H18A119.0
C1—C2—C10i128.3 (3)C19—C18—H18A119.0
C1—C2—C3116.3 (3)C20—C19—C18117.4 (5)
C10i—C2—C3115.2 (3)C20—C19—H19A121.3
C4—C3—C2123.5 (3)C18—C19—H19A121.3
C4—C3—H3A118.3C19—C20—C15126.9 (5)
C2—C3—H3A118.3C19—C20—H20A116.6
C3—C4—C5117.7 (3)C15—C20—H20A116.6
C3—C4—C11122.3 (3)C26—C21—C22119.8 (4)
C5—C4—C11120.0 (3)C26—C21—C9119.6 (4)
C6—C5—C4121.9 (3)C22—C21—C9120.2 (4)
C6—C5—H5A119.0C21—C22—C23118.6 (4)
C4—C5—H5A119.0C21—C22—H22A120.7
C1—C6—C5115.9 (3)C23—C22—H22A120.7
C1—C6—C7127.2 (3)C24—C23—C22117.8 (5)
C5—C6—C7116.7 (3)C24—C23—H23A121.1
N2—C7—C6123.5 (3)C22—C23—H23A121.1
N2—C7—H7A118.3C23—C24—C25122.2 (4)
C6—C7—H7A118.3C23—C24—H24A118.9
C15—C8—N2113.2 (3)C25—C24—H24A118.9
C15—C8—C9112.4 (3)C26—C25—C24120.2 (4)
N2—C8—C9107.4 (3)C26—C25—H25A119.9
C15—C8—H8A107.9C24—C25—H25A119.9
N2—C8—H8A107.9C25—C26—C21121.2 (5)
C9—C8—H8A107.9C25—C26—H26A119.4
N1—C9—C21117.4 (3)C21—C26—H26A119.4
N1—C9—C8108.1 (3)O2—C27—C27i100.0 (4)
C21—C9—C8109.9 (3)O2—C27—H27A110.4
N1—C9—H9A107.0C27i—C27—H27A101.1
C21—C9—H9A107.0O2—C27—H27B111.2
C8—C9—H9A107.0C27i—C27—H27B123.8
N1—C10—C2i127.1 (3)H27A—C27—H27B109.5
N1—C10—H10A109.2C10—N1—C9127.6 (3)
C2i—C10—H10A123.7C10—N1—Ni1120.6 (2)
C12—C11—C14113.5 (4)C9—N1—Ni1111.6 (2)
C12—C11—C13109.0 (4)C7—N2—C8123.1 (3)
C14—C11—C13107.3 (4)C7—N2—Ni1127.4 (3)
C12—C11—C4111.2 (3)C8—N2—Ni1109.2 (2)
C14—C11—C4111.3 (3)C1—O1—Ni1i131.4 (2)
C13—C11—C4103.9 (3)C1—O1—Ni1126.5 (2)
C11—C12—H12A109.5Ni1i—O1—Ni1101.38 (12)
C11—C12—H12B109.5C27—O2—Ni1126.5 (3)
H12A—C12—H12B109.5C27—O2—H2A107.0
C11—C12—H12C109.5Ni1—O2—H2A105.8
H12A—C12—H12C109.5O11—Cl1—O13110.0 (2)
H12B—C12—H12C109.5O11—Cl1—O12100.5 (2)
C11—C13—H13A109.5O13—Cl1—O12115.4 (2)
C11—C13—H13B109.5O11—Cl1—O14120.2 (2)
H13A—C13—H13B109.5O13—Cl1—O14106.9 (2)
C11—C13—H13C109.5O12—Cl1—O14104.07 (19)
H13A—C13—H13C109.5H4A—O4—H4C109.5
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O140.971.822.744 (5)159
O2—H2A···Cl10.972.913.608 (4)130
O3—H3B···O40.852.373.104 (8)144
O4—H4C···O14ii0.852.172.898 (7)144
O4—H4C···O12ii0.852.412.956 (8)123
O4—H4C···Cl1ii0.852.863.608 (7)147
Symmetry code: (ii) y+1, x, z.

Experimental details

Crystal data
Chemical formula[Ni2(C52H50N4O2)(C2H6O2)](ClO4)2·2H2O
Mr1177.38
Crystal system, space groupTetragonal, P41212
Temperature (K)293
a, c (Å)11.536 (3), 43.015 (3)
V3)5724 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.35 × 0.29 × 0.27
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XPREP; Bruker, 2000)
Tmin, Tmax0.750, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
8048, 5296, 4763
Rint0.011
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 1.09
No. of reflections5296
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.58
Absolute structureFlack (1983), 2037 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: CAD-4 SDP/VAX (Enraf-Nonius, 1989), CAD-4 SDP/VAX, TEXSAN (Molecular Structure Corporation, 1989), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O1i1.837 (3)Ni1—N11.901 (3)
Ni1—N21.874 (3)Ni1—O22.347 (4)
Ni1—O11.899 (3)Ni1—Ni1i2.8905 (12)
O1i—Ni1—N2172.65 (13)O1—Ni1—O288.59 (12)
O1i—Ni1—O178.35 (12)N1—Ni1—O286.02 (14)
N2—Ni1—O195.77 (12)O1i—Ni1—Ni1i40.09 (8)
O1i—Ni1—N196.12 (12)N2—Ni1—Ni1i134.29 (10)
N2—Ni1—N190.18 (13)O1—Ni1—Ni1i38.53 (8)
O1—Ni1—N1171.78 (14)N1—Ni1—Ni1i135.13 (10)
O1i—Ni1—O296.92 (13)O2—Ni1—Ni1i89.93 (8)
N2—Ni1—O287.26 (14)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O140.971.822.744 (5)159
O3—H3B···O40.852.373.104 (8)144
O4—H4C···O14ii0.852.172.898 (7)144
O4—H4C···O12ii0.852.412.956 (8)123
Symmetry code: (ii) y+1, x, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds