Download citation
Download citation
link to html
In the crystal structure of the title mol­ecule, C13H11ClO3S, the dihedral angle between the mean planes of the 4-tolyl and 4-chloro­phenyl rings is 64.95 (6)°. There are weak C—H...O hydrogen bonds which generate rings of motifs S(5), S(6), R12(9), R21(4), R12(6) and R22(8). The supramolecular aggregation is completed by the presence of C—H...Cl and C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012066/ob6250sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012066/ob6250Isup2.hkl
Contains datablock I

CCDC reference: 217446

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.094
  • Data-to-parameter ratio = 15.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 28.31 From the CIF: _reflns_number_total 3099 Count of symmetry unique reflns 1715 Completeness (_total/calc) 180.70% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1384 Fraction of Friedel pairs measured 0.807 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

p-Toluene sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992), development of immunoaffinity chromatography for the purification of human coagulation factor (Tharakan et al., 1992), chemical studies on viruses (Alford et al., 1991), development of technology for linking photosensitizer to model monoclonal antibody (Jiang et al., 1990) and chemical modification of sigma sub units of the E-coli RNA polymerase (Narayanan & Krakow, 1983). An X-ray study of the title compound, (I), was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues.

The dihedral angle between the mean planes of the 4-tolyl and 4-chlorophenyl rings is 64.95 (6)°. This shows their non-coplanar orientation similar to that found in 2-chlorophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003b), 8-tosyloxyquinoline (Vembu, Nallu, Garrison & Youngs, 2003c) and in contrast to the near coplanar orientation observed in 2,4-dinitrophenyl 4-toluenesulfonate (Vembu, Nallu, Garrison & Youngs, 2003a) and 4-methoxyphenyl 4-toluenesulfonate (Vembu, Nallu, Garrison, Hindi & Youngs, 2003).

The crystal structure of (I) is stabilized by weak C—H···O interactions. The range for the H···O distances (Table 2) agree with those found for weak C—H···O bonds (Desiraju & Steiner, 1999). The C4—H4···O1 and C4—H4···O3 interactions constitute a pair of bifurcated donor bonds, each of them generating a S(5) graph set (Etter, 1990; Bernstein et al., 1995) motif which are fused to each other. The C6—H6···O2 and C13—H13···O2 interactions constitute a pair of bifurcated acceptor bonds. They generate rings of graph-set motifs S(5) and S(6), respectively, which are fused to each other. The C9—H9···O2v and C4—H4···O2v (Table 2 and Fig. 4) interactions form a pair of bifurcated acceptor bonds, generating a ring of graph set R12(9). The C7—H7···O3iii and C7—H7···O1iii(Fig. 3) interactions form a pair of bifurcated donor bonds generating a ring of graph set R21(4). The H7···O3iii and H7···O1iii distances differ by 0.18 (3) Å. The resulting configuration can be regarded as a three-centered hygrogen-bonded chelate (Desiraju, 1989) and observed in similar structures (Vembu, Nallu, Garrison & Youngs, 2003b and 2003c; Vembu, Nallu, Garrison, Hindi & Youngs, 2003). The C7—H7···O3iii (Fig. 3) and C1—H1C···O3iii (Fig. 2) interactions constitute a pair of bifurcated acceptor bonds, generating a ring of graph set R12(6). The C1—H1C···O3iii (Fig. 2) and C7—H7···O1iii (Fig. 3) interactions generate a R22(8) motif which consists of R21(4) chelate and R12(6) ring motifs.

There are several other C—H···O (Figs. 3 and 4) and a C—H···Cl (Fig. 2) interactions which contribute for the supramolecular aggregation (Table 2). The supramolecular aggregation is completed by the presence of two C—H···π interactions (Table 2). The geometry of the C—H···π interaction was obtained from PLATON (Spek, 1998); Cg1 and Cg2 are the centroids of 4-tolyl and 4-chlorophenyl rings, respectively. Molecular packing in the unit cell is shown in Fig. 5.

Experimental top

4-Toluenesulfonyl chloride (4.7 mmol), dissolved in actone (4 ml), was added dropwise to 4-chlorophenol (5 mmol) in aqueous NaOH (2.5 ml, 10%) with constant shaking. The precipitated title compound (3.5 mmol, yield 74%) was filtered off and recrystallized from a 1:1 mixture of petroleum ether and acetone.

Refinement top

All hydrogen atoms were located from a difference Fourier map and their positional coordinates and isotropic displacement paramaters were refined. The C—H bond lengths are in the range 0.82 (4)–1.00 (3) Å, the H—C—H angles for the methyl group are in the range 101 (3)–108 (3)° and the C—C—H angles for the aromatic rings are in the range 115 (2)–130 (3)°.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The Molecular Structure of the title molecule, with displacement ellipsoids drawn at the 50% probablity level.
[Figure 2] Fig. 2. Diagram showing hydrogen bonds 3 and 9 (the numbering relates to sequence of entries in Table 2).
[Figure 3] Fig. 3. Diagram showing hydrogen bonds 1, 4, 6 and 7 (the numbering relates to sequence of entries in Table 2).
[Figure 4] Fig. 4. Diagram showing hydrogen bonds 4 and 5 (the numbering relates to sequence of entries in Table 2).
[Figure 5] Fig. 5. Packing of the molecule in the unit cell.
4-chlorophenyl 4-toluenesulfonate top
Crystal data top
C13H11ClO3SDx = 1.456 Mg m3
Mr = 282.73Melting point = 343–344 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 5.8937 (6) ÅCell parameters from 8098 reflections
b = 27.647 (3) Åθ = 2.6–28.3°
c = 7.9171 (8) ŵ = 0.45 mm1
V = 1290.1 (2) Å3T = 100 K
Z = 4Plate, colorless
F(000) = 5840.50 × 0.30 × 0.10 mm
Data collection top
CCD area detector
diffractometer
3099 independent reflections
Radiation source: fine-focus sealed tube2964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.805, Tmax = 0.956k = 3536
10721 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.1095P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3099 reflectionsΔρmax = 0.77 e Å3
207 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack(1983), 1384 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C13H11ClO3SV = 1290.1 (2) Å3
Mr = 282.73Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 5.8937 (6) ŵ = 0.45 mm1
b = 27.647 (3) ÅT = 100 K
c = 7.9171 (8) Å0.50 × 0.30 × 0.10 mm
Data collection top
CCD area detector
diffractometer
3099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2964 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.956Rint = 0.034
10721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039All H-atom parameters refined
wR(F2) = 0.094Δρmax = 0.77 e Å3
S = 1.12Δρmin = 0.26 e Å3
3099 reflectionsAbsolute structure: Flack(1983), 1384 Friedel pairs
207 parametersAbsolute structure parameter: 0.00 (7)
1 restraint
Special details top

Experimental. The Tmin and Tmax values obtained from the SIZE instruction are listed above. The absorption correction was applied using SADABS and it gives 0.741957 ratio of min/max transmission"

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.95291 (9)0.341051 (17)0.34256 (7)0.01823 (13)
Cl0.66184 (12)0.58207 (2)0.42087 (9)0.03484 (17)
O10.9539 (3)0.29973 (6)0.2359 (2)0.0283 (4)
O21.1589 (3)0.36511 (6)0.3842 (2)0.0253 (4)
O30.7930 (3)0.37809 (6)0.24118 (19)0.0208 (3)
C10.4324 (5)0.29812 (10)0.9804 (3)0.0248 (5)
C20.5629 (4)0.30854 (7)0.8206 (3)0.0179 (4)
C30.4808 (4)0.29391 (8)0.6642 (3)0.0192 (4)
C40.5981 (4)0.30353 (7)0.5161 (3)0.0175 (4)
C50.8018 (4)0.32878 (7)0.5269 (3)0.0156 (4)
C60.8879 (4)0.34391 (8)0.6817 (3)0.0188 (4)
C70.7687 (4)0.33351 (7)0.8276 (3)0.0205 (4)
C80.7729 (4)0.42636 (8)0.2969 (3)0.0182 (4)
C90.5813 (4)0.43951 (9)0.3845 (3)0.0251 (5)
C100.5498 (4)0.48784 (9)0.4244 (3)0.0263 (5)
C110.7085 (4)0.52104 (8)0.3763 (3)0.0225 (5)
C120.9036 (4)0.50791 (9)0.2922 (3)0.0263 (5)
C130.9367 (4)0.45969 (9)0.2512 (3)0.0250 (5)
H1A0.452 (7)0.2673 (16)1.014 (6)0.066 (12)*
H1B0.269 (5)0.2998 (10)0.969 (4)0.025 (7)*
H1C0.473 (6)0.3176 (13)1.070 (5)0.046 (10)*
H30.343 (5)0.2793 (10)0.656 (4)0.022 (7)*
H40.537 (5)0.2974 (9)0.406 (4)0.019 (7)*
H61.029 (7)0.3621 (14)0.669 (6)0.066 (12)*
H70.815 (4)0.3432 (9)0.940 (4)0.016 (6)*
H90.489 (6)0.4189 (12)0.411 (5)0.040 (9)*
H100.431 (6)0.4953 (12)0.476 (5)0.044 (10)*
H121.014 (6)0.5315 (13)0.256 (5)0.040 (9)*
H131.072 (5)0.4479 (10)0.191 (4)0.023 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0191 (2)0.0207 (2)0.0149 (2)0.00053 (18)0.0032 (2)0.0006 (2)
Cl0.0418 (4)0.0205 (3)0.0423 (4)0.0069 (2)0.0021 (3)0.0025 (2)
O10.0384 (10)0.0253 (8)0.0213 (8)0.0038 (7)0.0102 (8)0.0023 (7)
O20.0196 (8)0.0326 (9)0.0236 (9)0.0036 (6)0.0032 (6)0.0062 (7)
O30.0245 (8)0.0225 (8)0.0155 (7)0.0005 (6)0.0036 (6)0.0003 (6)
C10.0281 (14)0.0265 (12)0.0200 (12)0.0034 (10)0.0081 (9)0.0027 (9)
C20.0200 (10)0.0162 (9)0.0176 (11)0.0056 (7)0.0057 (8)0.0028 (8)
C30.0150 (11)0.0186 (10)0.0240 (11)0.0008 (8)0.0009 (9)0.0016 (8)
C40.0161 (10)0.0201 (9)0.0164 (10)0.0004 (8)0.0017 (8)0.0000 (9)
C50.0165 (10)0.0182 (9)0.0122 (9)0.0023 (7)0.0016 (7)0.0018 (7)
C60.0165 (10)0.0231 (10)0.0169 (11)0.0025 (8)0.0000 (8)0.0022 (8)
C70.0225 (10)0.0235 (10)0.0156 (11)0.0009 (8)0.0020 (9)0.0032 (8)
C80.0184 (10)0.0203 (9)0.0158 (10)0.0008 (8)0.0030 (7)0.0030 (8)
C90.0182 (10)0.0272 (11)0.0299 (14)0.0055 (9)0.0028 (8)0.0036 (9)
C100.0212 (12)0.0281 (11)0.0295 (13)0.0040 (8)0.0061 (10)0.0015 (10)
C110.0249 (11)0.0222 (10)0.0203 (12)0.0035 (8)0.0033 (8)0.0013 (8)
C120.0234 (12)0.0235 (11)0.0320 (13)0.0019 (9)0.0028 (9)0.0073 (9)
C130.0218 (11)0.0277 (12)0.0254 (12)0.0010 (9)0.0072 (9)0.0069 (9)
Geometric parameters (Å, º) top
S—O11.4216 (18)C4—H40.96 (3)
S—O21.4227 (17)C5—C61.390 (3)
S—O31.6071 (16)C6—C71.383 (3)
S—C51.743 (2)C6—H60.98 (5)
Cl—C111.745 (2)C7—H70.98 (3)
O3—C81.410 (3)C8—C91.375 (3)
C1—C21.508 (3)C8—C131.384 (3)
C1—H1A0.89 (5)C9—C101.387 (4)
C1—H1B0.96 (3)C9—H90.82 (4)
C1—H1C0.92 (4)C10—C111.366 (3)
C2—C31.390 (3)C10—H100.83 (4)
C2—C71.397 (3)C11—C121.377 (3)
C3—C41.387 (3)C12—C131.387 (4)
C3—H30.91 (3)C12—H120.97 (4)
C4—C51.393 (3)C13—H131.00 (3)
O1—S—O2120.66 (11)C7—C6—C5119.3 (2)
O1—S—O3102.58 (10)C7—C6—H6130 (3)
O2—S—O3108.58 (9)C5—C6—H6111 (3)
O1—S—C5110.11 (10)C6—C7—C2120.7 (2)
O2—S—C5109.40 (10)C6—C7—H7124.3 (16)
O3—S—C5104.06 (9)C2—C7—H7115.0 (16)
C8—O3—S119.71 (13)C9—C8—C13122.0 (2)
C2—C1—H1A112 (3)C9—C8—O3118.50 (19)
C2—C1—H1B114.2 (18)C13—C8—O3119.3 (2)
H1A—C1—H1B101 (3)C8—C9—C10118.7 (2)
C2—C1—H1C114 (2)C8—C9—H9120 (3)
H1A—C1—H1C106 (4)C10—C9—H9121 (3)
H1B—C1—H1C108 (3)C11—C10—C9119.6 (2)
C3—C2—C7118.8 (2)C11—C10—H10123 (2)
C3—C2—C1121.0 (2)C9—C10—H10117 (2)
C7—C2—C1120.2 (2)C10—C11—C12122.0 (2)
C4—C3—C2121.6 (2)C10—C11—Cl119.08 (18)
C4—C3—H3118 (2)C12—C11—Cl118.95 (18)
C2—C3—H3120.4 (19)C11—C12—C13119.0 (2)
C3—C4—C5118.2 (2)C11—C12—H12122 (2)
C3—C4—H4123.6 (17)C13—C12—H12119 (2)
C5—C4—H4117.6 (17)C8—C13—C12118.7 (2)
C6—C5—C4121.4 (2)C8—C13—H13117.9 (17)
C6—C5—S119.60 (16)C12—C13—H13123.4 (17)
C4—C5—S119.04 (17)
O1—S—O3—C8171.93 (16)C5—C6—C7—C20.6 (3)
O2—S—O3—C843.16 (18)C3—C2—C7—C60.5 (3)
C5—S—O3—C873.30 (17)C1—C2—C7—C6179.0 (2)
C7—C2—C3—C40.1 (3)S—O3—C8—C9102.2 (2)
C1—C2—C3—C4179.6 (2)S—O3—C8—C1382.7 (2)
C2—C3—C4—C50.5 (3)C13—C8—C9—C101.5 (4)
C3—C4—C5—C60.4 (3)O3—C8—C9—C10173.4 (2)
C3—C4—C5—S179.71 (16)C8—C9—C10—C110.1 (4)
O1—S—C5—C6136.71 (18)C9—C10—C11—C121.6 (4)
O2—S—C5—C61.9 (2)C9—C10—C11—Cl177.81 (19)
O3—S—C5—C6113.97 (18)C10—C11—C12—C131.8 (4)
O1—S—C5—C442.6 (2)Cl—C11—C12—C13177.6 (2)
O2—S—C5—C4177.40 (16)C9—C8—C13—C121.4 (4)
O3—S—C5—C466.73 (18)O3—C8—C13—C12173.6 (2)
C4—C5—C6—C70.1 (3)C11—C12—C13—C80.3 (4)
S—C5—C6—C7179.17 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.89 (5)2.56 (5)3.380 (3)154 (4)
C1—H1B···O1ii0.96 (3)2.83 (3)3.471 (3)125 (2)
C1—H1C···O3iii0.92 (4)2.87 (4)3.697 (3)151 (3)
C4—H4···O1iv0.96 (3)3.05 (3)3.713 (3)127.7 (19)
C4—H4···O2v0.96 (3)2.91 (3)3.269 (3)103.2 (18)
C7—H7···O1iii0.98 (3)2.75 (3)3.537 (3)138 (2)
C7—H7···O3iii0.98 (3)2.57 (3)3.500 (3)160 (2)
C9—H9···O2v0.82 (4)2.46 (4)3.228 (3)156 (4)
C13—H13···Clvi1.00 (3)2.77 (3)3.709 (3)158 (2)
C4—H4···O10.96 (3)2.80 (3)3.054 (3)96.2 (18)
C4—H4···O30.96 (3)2.98 (3)3.210 (3)94.8 (17)
C6—H6···O20.97 (5)2.37 (5)2.905 (3)114 (4)
C13—H13···O21.00 (3)2.79 (3)3.108 (3)99.0 (19)
C3—H3···Cg1iv0.91 (3)2.873.574134.7
C10—H10···Cg2vii0.83 (4)3.173.845140.7
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x1, y, z; (vi) x+2, y+1, z1/2; (vii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H11ClO3S
Mr282.73
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)5.8937 (6), 27.647 (3), 7.9171 (8)
V3)1290.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.50 × 0.30 × 0.10
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.805, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
10721, 3099, 2964
Rint0.034
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.12
No. of reflections3099
No. of parameters207
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.77, 0.26
Absolute structureFlack(1983), 1384 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
S—O11.4216 (18)Cl—C111.745 (2)
S—O21.4227 (17)O3—C81.410 (3)
S—O31.6071 (16)C1—C21.508 (3)
S—C51.743 (2)
O1—S—O2120.66 (11)O2—S—C5109.40 (10)
O1—S—O3102.58 (10)O3—S—C5104.06 (9)
O2—S—O3108.58 (9)C8—O3—S119.71 (13)
O1—S—C5110.11 (10)
C5—S—O3—C873.30 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.89 (5)2.56 (5)3.380 (3)154 (4)
C1—H1B···O1ii0.96 (3)2.83 (3)3.471 (3)125 (2)
C1—H1C···O3iii0.92 (4)2.87 (4)3.697 (3)151 (3)
C4—H4···O1iv0.96 (3)3.05 (3)3.713 (3)127.7 (19)
C4—H4···O2v0.96 (3)2.91 (3)3.269 (3)103.2 (18)
C7—H7···O1iii0.98 (3)2.75 (3)3.537 (3)138 (2)
C7—H7···O3iii0.98 (3)2.57 (3)3.500 (3)160 (2)
C9—H9···O2v0.82 (4)2.46 (4)3.228 (3)156 (4)
C13—H13···Clvi1.00 (3)2.77 (3)3.709 (3)158 (2)
C4—H4···O10.96 (3)2.80 (3)3.054 (3)96.2 (18)
C4—H4···O30.96 (3)2.98 (3)3.210 (3)94.8 (17)
C6—H6···O20.97 (5)2.37 (5)2.905 (3)114 (4)
C13—H13···O21.00 (3)2.79 (3)3.108 (3)99.0 (19)
C3—H3···Cg1iv0.91 (3)2.873.574134.7
C10—H10···Cg2vii0.83 (4)3.173.845140.7
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x1/2, y+1/2, z; (v) x1, y, z; (vi) x+2, y+1, z1/2; (vii) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds