Download citation
Download citation
link to html
The title compound, [Pt2(NH3)4(C5H9O2)2](SO4)·H2O, does not form an infinite chain, but has discrete dimeric cations in the crystal structure. The intradimer Pt—Pt distance in the pivalate dimer [2.9011 (9) Å] is effectively shorter than that reported for the acetate analog [2.9713 (8) Å], demonstrating the strong electron-donating property of the bridging pivalate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012224/ob6253sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012224/ob6253Isup2.hkl
Contains datablock I

CCDC reference: 217367

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.019 Å
  • H-atom completeness 94%
  • R factor = 0.045
  • wR factor = 0.092
  • Data-to-parameter ratio = 20.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 27 N1 -PT1 -O1 -C1 139.00 4.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 32 N3 -PT2 -O2 -C1 -104.00 7.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 36 N2 -PT1 -O3 -C6 174.00 44.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 41 N4 -PT2 -O4 -C6 118.00 10.00 1.555 1.555 1.555 1.555 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C10 H32 N4 O9 Pt2 S1 Atom count from the _atom_site data: C10 H30 N4 O9 Pt2 S1 CELLZ_01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C10 H32 N4 O9 Pt2 S TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 20.00 20.00 0.00 H 64.00 60.00 4.00 N 8.00 8.00 0.00 O 18.00 18.00 0.00 Pt 4.00 4.00 0.00 S 2.00 2.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

We have so far reported that the cis-diammineplatinum dimers doubly bridged with carboxylate ligands [Pt2(NH3)4(µ-carboxylato)2]2+ (carboxylate = acatate, propionate, etc.) tend to form quadruple hydrogen bonds with each other to give an infinite Pt chain in the crystal (Sakai et al., 1998; Sakai et al., 2002). However, arrangement of dimers in the crystal is sometimes largely affected by the hydrophobic interactions between the ligands. Here we report on the crystal structure of the title compound (I) as an example of structure in which the dimer cation does not stack in a one-dimensional manner due to the formation of a relatively strong hydrophobic layer in the crystal.

The asymmetric unit of (I) consists of a dimer cation, a sulfate anion, and a water molecule. Both of the tertiary butyl moieties show relatively large atom displacement parameters, as shown in Fig. 1. The bridged Pt—Pt distance [2.9011 (9) Å] is effectively shorter than the value of 2.9713 (8) Å reported for the acetate-bridged analog, [Pt2(NH3)4(µ-acetato)2](SiF6)·4H2O (Sakai et al., 1998). This is quite consistent with our previous observations; introduction of electron-withdrawing group onto the carboxylate ligand leads to the elongation of the bridged Pt—Pt distance (Sakai et al., 1998). In (I), the tertiary butyl unit is expected to have a stronger electron-donating property compared to the methyl unit of acetate, leading to a shorter Pt—Pt distance in (I) compared to that in the acetate analog. On the other hand, two platinum atoms within the dimer unit are shifted out of their individual Pt coordination planes in such a manner that they have an attractive interaction toward one another. The Pt1 and Pt2 atoms are shifted by 0.055 (4) and 0.018 (4) Å, respectively, where 4-atom r.m.s. deviations in the best-plane calculations are 0.034 and 0.003 Å, respectively. Structural features of this type of dimers have been evaluated by use of the following two structural parameters. One is a dihedral angle between the two Pt coordination planes within a dimeric unit (τ), and the other is an average torsional twist of them about the Pt—Pt axis (ω). The values are estimated as τ = 28.7 (3)° and ω = 6.1°.

Fig. 2 shows the crystal packing diagram of (I), revealing that no interdimer metal-metal interaction is achieved in the crystal, where the shortest interdimer Pt—Pt distance is 7.8514 (18) Å (see also Table. 1). The figure also shows that two major factors operate in the stabilization of the crystal packing. One is a hydrophilic layer within −0.25 < b < 0.25 in which hydrogen bonds formed between the ammines and the oxygen atoms of sulfates or water molecule dominate the intermolecular interactions. The other is a layer within 0.25 < b < 0.75 in which hydrophobic interactions among the tertiary butyl units dominate the intermolecular associations. Hydrogen bonds formed by use of amino groups as hydrogen donors are summarized in Table 2. Hydorgen bonds are also formed between the water molecule and the oxygen atoms of sulfate: O9···O7 (x, y − 1, z) = 2.828 (12) Å and O9···O8 (x + 1, y − 1, z) = 2.804 (13) Å.

Experimental top

To an aqueous solution of cis-[Pt(NH3)2(OH2)2](SO4) (0.1 mmol/0.7 ml H2O), prepared as previously described (Sakai et al., 1998; Sakai et al., 2002), was added (CH3)3CCO2Na (0.1 mmol). The solution was thermostatted at 303 K for a week to give the title compound (I) as pale yellow needles, which were collected by filtration and air-dried (yield: 17%). Analysis calculated for Pt2SO9N4C10H32: C, 15.51; H, 4.16; N, 7.32%; found: C, 15.39; H, 4.02; N, 7.17%.

Refinement top

Some of the methyl carbon atoms on tertiary butyl units were suggested to possess unusually large displacement parameters. However, refinement of them using a disordered model has been unsuccessful. Therefore, these C atoms were normally treated anisotropically. All H atoms except for those of a water molecule were located at their idealized positions as riding atoms (C–H=0.96 Å for methyl group, N–H=0.89 Å for ammine group). H atoms of the water molecule were not located. In the final difference Fourier synthesis, 10 residual peaks in the range 1.06–2.51 e Å−3 were observed within 1.05 Å from Pt atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2002), and ORTEP (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. Structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing view down the a axis of (I).
cis-Diammine(L-pyrolglutamato)platinum(II) top
Crystal data top
C10H30N4O4Pt22+·O4S2·H2OF(000) = 728
Mr = 774.64? # Insert any comments here.
Triclinic, P1Dx = 2.377 Mg m3
a = 6.7043 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.672 (3) ÅCell parameters from 4964 reflections
c = 16.100 (5) Åθ = 20.6–24.1°
α = 75.850 (5)°µ = 13.06 mm1
β = 88.835 (6)°T = 296 K
γ = 75.852 (5)°Needle, colorless
V = 1082.1 (5) Å30.42 × 0.08 × 0.07 mm
Z = 2
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4964 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.366 pixels mm-1θmax = 27.6°, θmin = 2.0°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.317, Tmax = 0.401l = 2020
10729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
4964 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = 1.90 e Å3
Crystal data top
C10H30N4O4Pt22+·O4S2·H2Oγ = 75.852 (5)°
Mr = 774.64V = 1082.1 (5) Å3
Triclinic, P1Z = 2
a = 6.7043 (19) ÅMo Kα radiation
b = 10.672 (3) ŵ = 13.06 mm1
c = 16.100 (5) ÅT = 296 K
α = 75.850 (5)°0.42 × 0.08 × 0.07 mm
β = 88.835 (6)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3056 reflections with I > 2σ(I)
Tmin = 0.317, Tmax = 0.401Rint = 0.053
10729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.86Δρmax = 2.51 e Å3
4964 reflectionsΔρmin = 1.90 e Å3
245 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.5371 (0.0046) x + 2.5637 (0.0293) y + 3.7884 (0.0451) z = 3.5903 (0.0240)

* −0.0346 (0.0039) N1 * 0.0340 (0.0039) N2 * −0.0338 (0.0039) O1 * 0.0344 (0.0039) O3 0.0551 (0.0039) Pt1 2.8270 (0.0040) Pt2

Rms deviation of fitted atoms = 0.0342

5.0332 (0.0135) x + 2.8474 (0.0301) y + 10.8039 (0.0361) z = 7.3520 (0.0222)

Angle to previous plane (with approximate e.s.d.) = 28.65 (0.27)

* −0.0034 (0.0040) N3 * 0.0034 (0.0040) N4 * −0.0035 (0.0041) O2 * 0.0035 (0.0041) O4 − 0.0177 (0.0039) Pt2 − 2.8560 (0.0040) Pt1

Rms deviation of fitted atoms = 0.0034

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.20565 (6)0.69485 (4)0.13721 (3)0.02558 (13)
Pt20.58037 (6)0.68741 (4)0.22731 (3)0.03042 (14)
S10.2717 (4)1.2083 (3)0.07774 (19)0.0313 (7)
O10.0980 (10)0.8275 (7)0.2097 (5)0.0312 (19)
O20.3820 (11)0.8067 (8)0.2896 (5)0.038 (2)
O30.2009 (11)0.5437 (8)0.2423 (5)0.0337 (19)
O40.5062 (11)0.5255 (8)0.3065 (5)0.042 (2)
O50.1845 (16)1.1053 (9)0.0622 (8)0.077 (3)
O60.3534 (14)1.2746 (10)0.0019 (6)0.067 (3)
O70.4366 (14)1.1482 (10)0.1439 (6)0.067 (3)
O80.1134 (15)1.3058 (9)0.1046 (7)0.080 (4)
O90.6920 (13)0.3274 (8)0.1283 (6)0.055 (3)
N10.2856 (15)0.5605 (9)0.0665 (6)0.044 (3)
H30.22010.59300.01540.066*
H10.25110.48560.09300.066*
H20.42090.54310.05990.066*
N20.2047 (12)0.8428 (9)0.0331 (6)0.032 (2)
H50.31990.82280.00540.048*
H60.19750.91810.04880.048*
H40.09650.85320.00130.048*
N30.7799 (13)0.5610 (9)0.1690 (6)0.035 (2)
H80.90640.54440.19170.052*
H90.77870.59870.11320.052*
H70.74140.48500.17670.052*
N40.6541 (13)0.8498 (8)0.1521 (6)0.035 (2)
H120.54840.92060.14770.052*
H100.68280.83650.10030.052*
H110.76360.86380.17530.052*
C10.1889 (15)0.8480 (10)0.2701 (7)0.026 (2)
C20.0650 (17)0.9226 (12)0.3313 (8)0.038 (3)
C30.053 (3)1.0580 (17)0.2769 (12)0.102 (7)
H140.04121.10000.24140.153*
H150.11701.11320.31370.153*
H130.15601.04580.24130.153*
C40.200 (3)0.952 (2)0.3948 (12)0.118 (8)
H170.27520.87030.43190.178*
H160.11471.00600.42830.178*
H180.29410.99990.36430.178*
C50.090 (3)0.847 (2)0.3755 (13)0.114 (8)
H200.17140.82970.33310.171*
H190.17900.89960.40850.171*
H210.01810.76390.41280.171*
C60.3363 (18)0.4926 (11)0.3005 (8)0.036 (3)
C70.3013 (17)0.3779 (11)0.3736 (7)0.037 (3)
C80.091 (2)0.3526 (17)0.3636 (11)0.089 (6)
H220.07580.27790.40840.133*
H240.07790.33380.30890.133*
H230.01420.43030.36710.133*
C90.332 (3)0.4073 (18)0.4574 (10)0.095 (6)
H260.23800.48970.46020.142*
H270.47110.41480.46310.142*
H250.30840.33650.50310.142*
C100.466 (2)0.2507 (15)0.3692 (13)0.100 (7)
H280.59920.26000.38320.150*
H300.46420.23780.31230.150*
H290.43670.17520.40930.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0163 (2)0.0287 (3)0.0340 (3)0.00773 (19)0.00293 (19)0.0100 (2)
Pt20.0158 (2)0.0347 (3)0.0425 (3)0.0097 (2)0.0011 (2)0.0095 (2)
S10.0236 (14)0.0299 (16)0.0415 (18)0.0072 (12)0.0011 (13)0.0100 (14)
O10.012 (4)0.044 (5)0.046 (5)0.011 (3)0.000 (3)0.023 (4)
O20.023 (4)0.052 (5)0.048 (5)0.009 (4)0.004 (4)0.026 (4)
O30.017 (4)0.038 (5)0.042 (5)0.008 (4)0.003 (4)0.001 (4)
O40.023 (4)0.046 (5)0.050 (5)0.016 (4)0.009 (4)0.010 (4)
O50.076 (7)0.032 (6)0.127 (10)0.012 (5)0.037 (7)0.026 (6)
O60.058 (6)0.076 (7)0.057 (6)0.012 (6)0.021 (5)0.004 (6)
O70.052 (6)0.070 (7)0.076 (7)0.019 (5)0.040 (5)0.003 (6)
O80.067 (7)0.049 (6)0.122 (10)0.004 (5)0.055 (7)0.034 (6)
O90.044 (5)0.041 (5)0.078 (7)0.009 (4)0.014 (5)0.011 (5)
N10.048 (7)0.038 (6)0.052 (7)0.023 (5)0.012 (5)0.012 (5)
N20.009 (4)0.031 (5)0.053 (6)0.004 (4)0.003 (4)0.009 (5)
N30.019 (5)0.042 (6)0.051 (7)0.012 (4)0.005 (5)0.022 (5)
N40.018 (5)0.029 (6)0.059 (7)0.008 (4)0.001 (5)0.013 (5)
C10.018 (5)0.022 (6)0.038 (7)0.004 (5)0.011 (5)0.008 (5)
C20.029 (6)0.038 (7)0.047 (8)0.000 (6)0.008 (6)0.018 (6)
C30.105 (15)0.085 (14)0.103 (15)0.025 (12)0.024 (12)0.051 (12)
C40.079 (13)0.18 (2)0.131 (18)0.010 (14)0.014 (13)0.115 (17)
C50.132 (18)0.145 (19)0.111 (16)0.082 (16)0.072 (14)0.074 (15)
C60.035 (7)0.030 (7)0.048 (8)0.012 (6)0.010 (6)0.014 (6)
C70.034 (7)0.040 (8)0.034 (7)0.013 (6)0.008 (6)0.000 (6)
C80.045 (9)0.118 (15)0.087 (12)0.050 (10)0.005 (9)0.033 (11)
C90.156 (19)0.087 (13)0.063 (11)0.080 (13)0.021 (12)0.008 (10)
C100.062 (11)0.057 (11)0.156 (19)0.009 (9)0.028 (12)0.013 (12)
Geometric parameters (Å, º) top
Pt1—N22.001 (9)N1—H10.8900
Pt1—N12.009 (9)N1—H20.8900
Pt1—O32.038 (8)N2—H50.8900
Pt1—O12.040 (7)N2—H60.8900
Pt1—Pt22.9011 (9)N2—H40.8900
Pt1—Pt2i7.8514 (18)N3—H80.8900
Pt2—N42.020 (8)N3—H90.8900
Pt2—O22.034 (7)N3—H70.8900
Pt2—N32.043 (8)N4—H120.8900
Pt2—O42.043 (7)N4—H100.8900
Pt2—Pt1ii11.886 (3)N4—H110.8900
S1—O81.434 (9)C3—H140.9600
S1—O51.438 (9)C3—H150.9600
S1—O71.462 (9)C3—H130.9600
S1—O61.470 (9)C4—H170.9600
O1—C11.249 (12)C4—H160.9600
O2—C11.280 (12)C4—H180.9600
O3—C61.243 (14)C5—H200.9600
O4—C61.283 (13)C5—H190.9600
O7—O9iii2.828 (12)C5—H210.9600
O9—O7ii2.828 (12)C8—H220.9600
C1—C21.523 (15)C8—H240.9600
C2—C41.516 (19)C8—H230.9600
C2—C31.53 (2)C9—H260.9600
C2—C51.532 (19)C9—H270.9600
C6—C71.537 (15)C9—H250.9600
C7—C91.488 (19)C10—H280.9600
C7—C81.518 (16)C10—H300.9600
C7—C101.542 (18)C10—H290.9600
N1—H30.8900
N2—Pt1—N190.3 (4)Pt1—N1—H1109.5
N2—Pt1—O3178.8 (3)H3—N1—H1109.5
N1—Pt1—O389.3 (4)Pt1—N1—H2109.5
N2—Pt1—O191.4 (3)H3—N1—H2109.5
N1—Pt1—O1174.6 (3)H1—N1—H2109.5
O3—Pt1—O188.8 (3)Pt1—N2—H5109.5
N2—Pt1—Pt2100.9 (2)Pt1—N2—H6109.5
N1—Pt1—Pt2106.0 (3)H5—N2—H6109.5
O3—Pt1—Pt280.3 (2)Pt1—N2—H4109.5
O1—Pt1—Pt278.61 (19)H5—N2—H4109.5
N2—Pt1—Pt2i77.8 (3)H6—N2—H4109.5
N1—Pt1—Pt2i13.2 (3)Pt2—N3—H8109.5
O3—Pt1—Pt2i101.7 (2)Pt2—N3—H9109.5
O1—Pt1—Pt2i165.7 (2)H8—N3—H9109.5
Pt2—Pt1—Pt2i112.477 (18)Pt2—N3—H7109.5
N4—Pt2—O289.8 (3)H8—N3—H7109.5
N4—Pt2—N392.5 (4)H9—N3—H7109.5
O2—Pt2—N3177.6 (3)Pt2—N4—H12109.5
N4—Pt2—O4178.3 (4)Pt2—N4—H10109.5
O2—Pt2—O489.0 (3)H12—N4—H10109.5
N3—Pt2—O488.8 (4)Pt2—N4—H11109.5
N4—Pt2—Pt199.8 (3)H12—N4—H11109.5
O2—Pt2—Pt182.8 (2)H10—N4—H11109.5
N3—Pt2—Pt197.6 (2)C2—C3—H14109.5
O4—Pt2—Pt181.3 (2)C2—C3—H15109.5
N4—Pt2—Pt1ii137.2 (3)H14—C3—H15109.5
O2—Pt2—Pt1ii119.7 (2)C2—C3—H13109.5
N3—Pt2—Pt1ii58.8 (2)H14—C3—H13109.5
O4—Pt2—Pt1ii44.5 (2)H15—C3—H13109.5
Pt1—Pt2—Pt1ii58.715 (12)C2—C4—H17109.5
O8—S1—O5109.1 (6)C2—C4—H16109.5
O8—S1—O7110.8 (7)H17—C4—H16109.5
O5—S1—O7108.8 (6)C2—C4—H18109.5
O8—S1—O6108.3 (6)H17—C4—H18109.5
O5—S1—O6109.7 (7)H16—C4—H18109.5
O7—S1—O6110.2 (6)C2—C5—H20109.5
C1—O1—Pt1128.3 (7)C2—C5—H19109.5
C1—O2—Pt2122.9 (7)H20—C5—H19109.5
C6—O3—Pt1126.8 (7)C2—C5—H21109.5
C6—O4—Pt2124.3 (7)H20—C5—H21109.5
S1—O7—O9iii107.1 (5)H19—C5—H21109.5
O1—C1—O2126.1 (10)C7—C8—H22109.5
O1—C1—C2119.5 (9)C7—C8—H24109.5
O2—C1—C2114.3 (10)H22—C8—H24109.5
C4—C2—C1112.9 (11)C7—C8—H23109.5
C4—C2—C3105.8 (13)H22—C8—H23109.5
C1—C2—C3106.8 (10)H24—C8—H23109.5
C4—C2—C5112.4 (14)C7—C9—H26109.5
C1—C2—C5110.0 (11)C7—C9—H27109.5
C3—C2—C5108.7 (13)H26—C9—H27109.5
O3—C6—O4126.6 (11)C7—C9—H25109.5
O3—C6—C7118.0 (10)H26—C9—H25109.5
O4—C6—C7115.4 (11)H27—C9—H25109.5
C9—C7—C8112.4 (12)C7—C10—H28109.5
C9—C7—C6109.4 (10)C7—C10—H30109.5
C8—C7—C6111.3 (10)H28—C10—H30109.5
C9—C7—C10107.8 (13)C7—C10—H29109.5
C8—C7—C10108.1 (12)H28—C10—H29109.5
C6—C7—C10107.7 (10)H30—C10—H29109.5
Pt1—N1—H3109.5
N2—Pt1—Pt2—N46.7 (4)Pt1ii—Pt2—O2—C151.3 (9)
N1—Pt1—Pt2—N4100.2 (4)N2—Pt1—O3—C6174 (44)
O3—Pt1—Pt2—N4173.3 (3)N1—Pt1—O3—C6101.4 (10)
O1—Pt1—Pt2—N482.6 (3)O1—Pt1—O3—C683.7 (10)
Pt2i—Pt1—Pt2—N488.0 (3)Pt2—Pt1—O3—C65.0 (9)
N2—Pt1—Pt2—O295.3 (3)Pt2i—Pt1—O3—C6106.1 (9)
N1—Pt1—Pt2—O2171.3 (4)N4—Pt2—O4—C6118 (10)
O3—Pt1—Pt2—O284.8 (3)O2—Pt2—O4—C674.7 (10)
O1—Pt1—Pt2—O26.0 (3)N3—Pt2—O4—C6106.1 (10)
Pt2i—Pt1—Pt2—O2176.5 (2)Pt1—Pt2—O4—C68.2 (9)
N2—Pt1—Pt2—N387.1 (4)Pt1ii—Pt2—O4—C661.8 (9)
N1—Pt1—Pt2—N36.4 (4)O8—S1—O7—O9iii80.7 (6)
O3—Pt1—Pt2—N392.9 (3)O5—S1—O7—O9iii159.3 (6)
O1—Pt1—Pt2—N3176.4 (3)O6—S1—O7—O9iii39.1 (7)
Pt2i—Pt1—Pt2—N35.9 (3)Pt1—O1—C1—O213.4 (16)
N2—Pt1—Pt2—O4174.7 (4)Pt1—O1—C1—C2163.3 (7)
N1—Pt1—Pt2—O481.2 (4)Pt2—O2—C1—O13.5 (15)
O3—Pt1—Pt2—O45.3 (3)Pt2—O2—C1—C2173.3 (7)
O1—Pt1—Pt2—O496.0 (3)O1—C1—C2—C4173.7 (13)
Pt2i—Pt1—Pt2—O493.5 (2)O2—C1—C2—C49.3 (16)
N2—Pt1—Pt2—Pt1ii133.3 (3)O1—C1—C2—C357.8 (14)
N1—Pt1—Pt2—Pt1ii39.8 (3)O2—C1—C2—C3125.2 (12)
O3—Pt1—Pt2—Pt1ii46.7 (2)O1—C1—C2—C560.0 (16)
O1—Pt1—Pt2—Pt1ii137.4 (2)O2—C1—C2—C5117.0 (14)
Pt2i—Pt1—Pt2—Pt1ii52.088 (12)Pt1—O3—C6—O40.5 (18)
N2—Pt1—O1—C1112.5 (9)Pt1—O3—C6—C7179.4 (7)
N1—Pt1—O1—C1139 (4)Pt2—O4—C6—O37.7 (18)
O3—Pt1—O1—C168.7 (9)Pt2—O4—C6—C7172.5 (7)
Pt2—Pt1—O1—C111.7 (8)O3—C6—C7—C9128.5 (13)
Pt2i—Pt1—O1—C1153.7 (7)O4—C6—C7—C951.6 (15)
N4—Pt2—O2—C196.1 (9)O3—C6—C7—C83.7 (17)
N3—Pt2—O2—C1104 (7)O4—C6—C7—C8176.4 (12)
O4—Pt2—O2—C185.1 (8)O3—C6—C7—C10114.6 (13)
Pt1—Pt2—O2—C13.8 (8)O4—C6—C7—C1065.3 (15)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H6···O50.892.042.923 (12)170
N4—H12···O70.892.353.133 (13)148
N3—H7···O90.892.112.920 (12)150
N1—H3···O9i0.892.383.086 (13)137
N1—H1···O8ii0.892.293.128 (13)156
N3—H8···O3iv0.892.153.027 (11)169
N4—H11···O1iv0.892.243.071 (11)156
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H30N4O4Pt22+·O4S2·H2O
Mr774.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.7043 (19), 10.672 (3), 16.100 (5)
α, β, γ (°)75.850 (5), 88.835 (6), 75.852 (5)
V3)1082.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)13.06
Crystal size (mm)0.42 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.317, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
10729, 4964, 3056
Rint0.053
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.092, 0.86
No. of reflections4964
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.51, 1.90

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2002), and ORTEP (Johnson, 1976).

Selected geometric parameters (Å, º) top
Pt1—N22.001 (9)Pt2—N42.020 (8)
Pt1—N12.009 (9)Pt2—O22.034 (7)
Pt1—O32.038 (8)Pt2—N32.043 (8)
Pt1—O12.040 (7)Pt2—O42.043 (7)
Pt1—Pt22.9011 (9)Pt2—Pt1ii11.886 (3)
Pt1—Pt2i7.8514 (18)
N2—Pt1—N190.3 (4)N4—Pt2—O289.8 (3)
N2—Pt1—O3178.8 (3)N4—Pt2—N392.5 (4)
N1—Pt1—O389.3 (4)O2—Pt2—N3177.6 (3)
N2—Pt1—O191.4 (3)N4—Pt2—O4178.3 (4)
N1—Pt1—O1174.6 (3)O2—Pt2—O489.0 (3)
O3—Pt1—O188.8 (3)N3—Pt2—O488.8 (4)
N2—Pt1—Pt2—N46.7 (4)N1—Pt1—Pt2—N36.4 (4)
O1—Pt1—Pt2—O26.0 (3)O3—Pt1—Pt2—O45.3 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H6···O50.892.042.923 (12)169.7
N4—H12···O70.892.353.133 (13)147.5
N3—H7···O90.892.112.920 (12)150.1
N1—H3···O9i0.892.383.086 (13)136.9
N1—H1···O8ii0.892.293.128 (13)156.3
N3—H8···O3iii0.892.153.027 (11)169.4
N4—H11···O1iii0.892.243.071 (11)155.9
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds