Download citation
Download citation
link to html
The title compound, {[Ag(bpe)](OTf)}n (OTf = trifluoromethanesulfonate) or {[Ag(C12H12N2)](CF3O3S)}n, has been prepared from the reaction of 1,2-bis(4-pyridyl)­ethane (bpe) and Ag(CF3SO3) in MeCN/H2O. The AgI atom is two-coordinate in a slightly distorted linear arrangement, and the bpe ligands link the AgI atoms, in an anti fashion, into a one-dimensional linear chain of alternating AgI and bpe.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011565/om6146sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011565/om6146Isup2.hkl
Contains datablock I

CCDC reference: 217356

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.044
  • wR factor = 0.076
  • Data-to-parameter ratio = 17.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom has ADP max/min Ratio ............. 3.10 C27 PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C26 - C27 = 1.37 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The design and synthesis of supramolecular frameworks has made rapid progress in recent years owing to their intriguing structural diversities and their potential application as functional materials (Eddaoudi et al., 2001; Hagrman et al., 1999; Moulton et al., 2001). Metal–pyridine coordination is an important tool in the construction of these frameworks. A number of pyridine-donor bis-monodentate ligands bearing rigid (Fujita et al., 1995; MacGillivray et al., 1994) or flexible (Carlucci et al., 1997; Hennigar et al., 1997) alkyl and aryl spacers have been extensively employed to develop supramolecular complexes with various structures and functions. 1,2-bis(4-pyridyl)ethane (bpe) can adopt the gauche and anti conformations, which may include supramolecular isomerism in coordination polymers (Fu et al., 2002; Hennigar et al., 1997). Silver(I) is an extremely soft acid and has a good affinity for most coordination atoms in a ligand. The self-assembly of silver(I) with organic ligands can give rise to a variety of supramolecualr complexes, in which silver(I) exhibits a labile coordination modes, such as linear, trigonal, tetrahedral, square-planar, pentagonal, square-pyramidal and even octahedral fashions (LaDuca et al., 2000; Khlobystov et al., 2001; Munakata et al., 1997; Su et al., 2002; Tong et al., 2000). The combination of both can result in some interesting structural topologies (LaDuca et al., 2000). Moreover, the assembly process may be influenced by solvent system, the ratio of metal to ligand, template and counter-ions. Sometimes, the alteration in any of these factors can result in new complexes with different structure and different functions. Here, we wish to report a one-dimensional silver(I) compound {[Ag(bpe)](OTf)}n (OTf = trifluoromethanesulfonate), (I).

Single-crystal X-ray diffraction analysis of (I) reveals that the title compound crystallizes in monoclinic space group P21/c and consists of the slightly distorted linear [Ag(bpe)]n chains and counter anions OTf. As shown in Fig. 1, each AgI center is coordinated by two nitrogen atoms from different bpe in a slightly distorted linear fashion to form a linear chain of alternating AgI and bpe. Ag—N bond distances are in the range from 2.149 (5) to 2.168 (5) Å, which are typical values for AgI—Npy coordination distances (Junior et al., 2000; Khlobystov et al., 2001; Munakata et al., 1997). The bond angles of N3—Ag1—N2 and N4—Ag2—N1A are 170.0 (2) and 161.8 (2)°, respectively, indicative of the presence of a linear distortion in the compound. Bpe acts as an exo-bidentate ligand in an anti conformation to link two-coordinated AgI into a one-dimensional linear chain. The dihedral angles between two pyridyl rings are 37.8 and 62.8° in bpe ligands. The shorter bond distances of C14—C15 [1.446 (6) Å] and C26—C27 [1.372 (6) Å] suggest a conformational disorder in the bridging ethane groups of bpe. Ag···Ag separations across bpe are 13.605 and 13.619 Å. The closest Ag···Ag distance in the adjacent chains is 3.55 Å, which is longer than the summed van der Waals radius of two silver atoms (3.44 Å). It is noteworthy that there are two types of distinctly different OTf, i.e. one only acts as a counter-anion the other not only serves as a counter-anions, but also behaves in a bridging mode to link adjacent chains into a two-dimensional layer structure through weak Ag···O interactions (Fig. 2). [Ag1···O4i = 2.758 (4) Å and Ag2···O5 = 2.717 (3) Å; symmetry code: (i) −x, y + 1/2, −z − 1/2].

Experimental top

A solution of Ag(CF3SO3) (0.13 g, 0.5 mmol) in H2O (10 ml) was added slowly to a stirring solution of bpe (0.10 g, 0.50 mmol) in methanol (20 ml), the reaction mixture was stirred for 3 h at room temperature and gave a colorless solution which was filtered. The colorless crystals of the title compound were obtained by keeping the resulting solution in air for one week.

Refinement top

The positions of all H atoms were generated geometrically (C—H bond fixed at 0.96 Å), assigned isoptropic displacement parameters and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of molecular structure of (I), with H atoms ommitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of two-dimensional layer formed through weak Ag···O interactions along the a axis.
(I) top
Crystal data top
[Ag(C12H12N2)](CF3O3S)F(000) = 1744
Mr = 441.18Dx = 1.878 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8575 (15) ÅCell parameters from 5201 reflections
b = 15.195 (2) Åθ = 2.8–27.6°
c = 20.974 (3) ŵ = 1.47 mm1
β = 96.654 (4)°T = 293 K
V = 3120.4 (8) Å3Needle, colorless
Z = 80.46 × 0.32 × 0.25 mm
Data collection top
Siemens SMART CCD
diffractometer
7176 independent reflections
Radiation source: fine-focus sealed tube2940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.574, Tmax = 0.692k = 1819
21114 measured reflectionsl = 2718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0132P)2]
where P = (Fo2 + 2Fc2)/3
7176 reflections(Δ/σ)max = 0.004
415 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ag(C12H12N2)](CF3O3S)V = 3120.4 (8) Å3
Mr = 441.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.8575 (15) ŵ = 1.47 mm1
b = 15.195 (2) ÅT = 293 K
c = 20.974 (3) Å0.46 × 0.32 × 0.25 mm
β = 96.654 (4)°
Data collection top
Siemens SMART CCD
diffractometer
7176 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2940 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.692Rint = 0.067
21114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.95Δρmax = 0.53 e Å3
7176 reflectionsΔρmin = 0.55 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Eight low-angle reflections omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.40467 (4)0.45484 (3)0.058762 (19)0.06985 (16)
Ag20.63954 (4)0.36891 (3)0.42253 (2)0.06922 (16)
N11.1916 (4)0.3960 (3)0.5044 (2)0.0547 (12)
N20.5614 (3)0.4471 (3)0.13918 (17)0.0457 (10)
N30.2278 (3)0.4505 (3)0.01102 (18)0.0543 (11)
N40.4614 (4)0.3858 (3)0.35279 (19)0.0541 (11)
S10.84245 (15)0.75924 (11)0.32770 (7)0.0659 (4)
S20.42402 (14)0.21579 (10)0.52218 (7)0.0617 (4)
O10.8519 (4)0.6657 (3)0.3294 (2)0.1180 (16)
O20.9701 (3)0.8018 (3)0.32673 (19)0.1005 (14)
O30.7558 (4)0.7943 (3)0.3697 (2)0.1188 (16)
O40.4474 (4)0.1341 (2)0.5555 (2)0.1071 (15)
O50.5149 (3)0.2316 (2)0.47487 (16)0.0707 (10)
O60.2853 (3)0.2361 (2)0.50267 (19)0.0946 (13)
F10.7366 (4)0.8629 (3)0.23702 (19)0.1500 (18)
F20.8236 (4)0.7480 (3)0.20393 (17)0.1232 (14)
F30.6341 (3)0.7435 (3)0.24095 (17)0.1387 (16)
F40.4060 (4)0.2903 (3)0.6325 (2)0.1574 (19)
F50.4506 (4)0.3777 (3)0.5578 (2)0.1343 (16)
F60.6055 (4)0.2920 (3)0.60159 (17)0.1360 (15)
C10.7545 (7)0.7801 (5)0.2488 (3)0.0784 (18)
C20.4715 (7)0.2969 (5)0.5837 (4)0.093 (2)
C111.2069 (5)0.4466 (4)0.4546 (3)0.088 (2)
H11A1.29180.47220.45180.106*
C121.1034 (5)0.4630 (4)0.4068 (3)0.091 (2)
H12A1.11990.49800.37220.109*
C130.9761 (5)0.4286 (3)0.4092 (2)0.0525 (14)
C140.8601 (4)0.4464 (3)0.3565 (2)0.0680 (16)
H14A0.77580.42430.37020.082*
H14B0.85040.50960.35080.082*
C150.8789 (5)0.4071 (4)0.2954 (3)0.101 (2)
H15A0.88980.34410.30140.121*
H15B0.96320.42960.28190.121*
C160.7643 (5)0.4230 (4)0.2413 (2)0.0663 (17)
C170.6752 (6)0.3579 (4)0.2214 (3)0.0839 (19)
H17A0.68100.30380.24220.101*
C180.5770 (5)0.3716 (4)0.1709 (3)0.0701 (17)
H18A0.51800.32560.15800.084*
C190.6452 (4)0.5114 (3)0.1595 (2)0.0510 (14)
H19A0.63540.56540.13870.061*
C200.7472 (5)0.5026 (4)0.2105 (2)0.0609 (16)
H20A0.80320.55000.22360.073*
C210.9603 (5)0.3774 (3)0.4595 (2)0.0632 (15)
H21A0.87600.35160.46310.076*
C221.0691 (5)0.3623 (3)0.5067 (2)0.0677 (16)
H22A1.05480.32680.54140.081*
C230.1742 (5)0.3732 (4)0.0291 (2)0.0697 (16)
H23A0.21740.32240.01240.084*
C240.0575 (5)0.3647 (4)0.0716 (3)0.0725 (17)
H24A0.02310.30900.08250.087*
C250.0086 (5)0.4384 (4)0.0979 (2)0.0597 (16)
C260.1376 (5)0.4318 (4)0.1443 (3)0.095 (2)
H26A0.19940.39130.12650.114*
H26B0.18120.48910.14710.114*
C270.1214 (5)0.4045 (5)0.2053 (3)0.117 (3)
H27A0.07850.34700.20150.140*
H27B0.05620.44410.22150.140*
C280.2420 (5)0.3973 (4)0.2570 (2)0.0637 (16)
C290.2306 (4)0.3578 (3)0.3129 (2)0.0531 (14)
H29A0.14780.33280.32030.064*
C300.3407 (5)0.3537 (3)0.3598 (2)0.0609 (15)
H30A0.32860.32670.39850.073*
C310.4720 (5)0.4247 (4)0.2983 (3)0.091 (2)
H31A0.55600.44900.29220.110*
C320.3679 (5)0.4322 (4)0.2494 (3)0.113 (3)
H32A0.38220.46060.21140.135*
C330.0490 (5)0.5173 (4)0.0806 (2)0.0573 (15)
H33A0.00980.56890.09800.069*
C340.1656 (5)0.5215 (3)0.0372 (2)0.0569 (14)
H34A0.20210.57640.02580.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0497 (2)0.1013 (4)0.0511 (3)0.0145 (2)0.02595 (19)0.0129 (3)
Ag20.0489 (2)0.0970 (4)0.0540 (3)0.0090 (2)0.0269 (2)0.0059 (3)
N10.045 (3)0.066 (3)0.048 (3)0.010 (2)0.016 (2)0.000 (2)
N20.039 (2)0.053 (3)0.041 (3)0.006 (2)0.0110 (19)0.004 (2)
N30.047 (2)0.060 (3)0.051 (3)0.007 (2)0.016 (2)0.000 (3)
N40.037 (2)0.075 (3)0.047 (3)0.000 (2)0.014 (2)0.008 (2)
S10.0605 (10)0.0791 (13)0.0542 (10)0.0058 (9)0.0104 (8)0.0022 (9)
S20.0547 (9)0.0648 (11)0.0621 (11)0.0056 (8)0.0080 (8)0.0072 (8)
O10.172 (4)0.066 (3)0.104 (4)0.008 (3)0.037 (3)0.015 (3)
O20.063 (2)0.130 (4)0.103 (4)0.033 (2)0.014 (2)0.007 (3)
O30.090 (3)0.194 (5)0.071 (3)0.023 (3)0.005 (3)0.032 (3)
O40.099 (3)0.072 (3)0.148 (4)0.009 (2)0.004 (3)0.055 (3)
O50.074 (2)0.089 (3)0.050 (2)0.008 (2)0.012 (2)0.002 (2)
O60.053 (2)0.105 (3)0.118 (4)0.014 (2)0.024 (2)0.008 (3)
F10.207 (4)0.095 (3)0.133 (4)0.042 (3)0.042 (3)0.039 (3)
F20.129 (3)0.182 (4)0.057 (3)0.030 (3)0.000 (2)0.011 (3)
F30.081 (2)0.225 (5)0.099 (3)0.027 (3)0.039 (2)0.009 (3)
F40.156 (4)0.258 (5)0.061 (3)0.020 (3)0.026 (3)0.031 (3)
F50.138 (3)0.091 (3)0.168 (4)0.001 (3)0.004 (3)0.039 (3)
F60.095 (3)0.207 (4)0.096 (3)0.010 (3)0.033 (2)0.033 (3)
C10.081 (5)0.094 (6)0.056 (5)0.005 (4)0.013 (4)0.004 (4)
C20.071 (5)0.128 (7)0.077 (6)0.012 (5)0.005 (4)0.001 (5)
C110.046 (3)0.132 (6)0.079 (5)0.024 (4)0.024 (3)0.027 (4)
C120.069 (4)0.128 (6)0.069 (4)0.035 (4)0.023 (3)0.050 (4)
C130.052 (3)0.058 (4)0.041 (3)0.006 (3)0.020 (3)0.002 (3)
C140.056 (3)0.093 (4)0.049 (4)0.006 (3)0.023 (3)0.008 (3)
C150.081 (4)0.161 (6)0.054 (4)0.051 (4)0.027 (4)0.031 (4)
C160.058 (4)0.092 (5)0.043 (4)0.027 (3)0.020 (3)0.012 (3)
C170.120 (5)0.061 (4)0.060 (4)0.025 (4)0.036 (4)0.005 (3)
C180.089 (4)0.046 (4)0.065 (4)0.008 (3)0.036 (3)0.002 (3)
C190.044 (3)0.056 (4)0.050 (3)0.003 (3)0.010 (3)0.008 (3)
C200.043 (3)0.085 (5)0.050 (4)0.014 (3)0.014 (3)0.017 (3)
C210.045 (3)0.084 (4)0.055 (4)0.012 (3)0.015 (3)0.012 (3)
C220.057 (3)0.083 (4)0.058 (4)0.000 (3)0.013 (3)0.027 (3)
C230.071 (4)0.064 (4)0.065 (4)0.018 (3)0.028 (3)0.000 (3)
C240.068 (4)0.070 (4)0.073 (4)0.003 (3)0.020 (3)0.012 (3)
C250.047 (3)0.085 (5)0.041 (3)0.014 (3)0.020 (3)0.008 (3)
C260.062 (4)0.154 (6)0.060 (4)0.011 (4)0.031 (3)0.018 (4)
C270.044 (3)0.225 (8)0.074 (5)0.031 (4)0.024 (3)0.065 (5)
C280.041 (3)0.098 (5)0.046 (4)0.007 (3)0.020 (3)0.021 (3)
C290.035 (3)0.071 (4)0.049 (4)0.005 (3)0.010 (2)0.012 (3)
C300.046 (3)0.089 (4)0.044 (3)0.000 (3)0.013 (3)0.018 (3)
C310.044 (3)0.165 (6)0.059 (4)0.032 (4)0.023 (3)0.044 (4)
C320.052 (4)0.198 (7)0.080 (5)0.036 (4)0.026 (3)0.083 (5)
C330.051 (3)0.070 (4)0.046 (3)0.015 (3)0.012 (3)0.006 (3)
C340.055 (3)0.067 (4)0.045 (3)0.000 (3)0.009 (3)0.002 (3)
Geometric parameters (Å, º) top
Ag1—N32.143 (3)C15—C161.524 (6)
Ag1—N22.155 (3)C15—H15A0.9700
Ag1—O4i2.758 (4)C15—H15B0.9700
Ag2—N42.166 (3)C16—C171.356 (6)
Ag2—N1ii2.167 (4)C16—C201.374 (6)
Ag2—O52.717 (3)C17—C181.366 (6)
N1—C221.317 (5)C17—H17A0.9300
N1—C111.321 (6)C18—H18A0.9300
N1—Ag2iii2.167 (4)C19—C201.386 (6)
N2—C191.318 (5)C19—H19A0.9300
N2—C181.326 (5)C20—H20A0.9300
N3—C231.325 (5)C21—C221.392 (6)
N3—C341.327 (5)C21—H21A0.9300
N4—C311.301 (5)C22—H22A0.9300
N4—C301.310 (5)C23—C241.377 (6)
S1—O31.402 (4)C23—H23A0.9300
S1—O21.417 (3)C24—C251.378 (6)
S1—O11.424 (4)C24—H24A0.9300
S1—C11.804 (6)C25—C331.359 (6)
S2—O61.415 (3)C25—C261.512 (5)
S2—O41.431 (3)C26—C271.372 (6)
S2—O51.432 (3)C26—H26A0.9700
S2—C21.806 (7)C26—H26B0.9700
F1—C11.292 (6)C27—C281.517 (6)
F2—C11.317 (6)C27—H27A0.9700
F3—C11.304 (6)C27—H27B0.9700
F4—C21.278 (7)C28—C291.333 (6)
F5—C21.348 (7)C28—C321.376 (6)
F6—C21.333 (6)C29—C301.379 (5)
C11—C121.368 (6)C29—H29A0.9300
C11—H11A0.9300C30—H30A0.9300
C12—C131.366 (6)C31—C321.370 (6)
C12—H12A0.9300C31—H31A0.9300
C13—C211.336 (6)C32—H32A0.9300
C13—C141.519 (5)C33—C341.382 (5)
C14—C151.446 (6)C33—H33A0.9300
C14—H14A0.9700C34—H34A0.9300
C14—H14B0.9700
N3—Ag1—N2170.27 (15)C17—C16—C20117.2 (5)
N3—Ag1—O4i97.37 (15)C17—C16—C15120.8 (6)
N2—Ag1—O4i88.59 (14)C20—C16—C15122.0 (5)
N4—Ag2—N1ii161.97 (15)C16—C17—C18120.2 (5)
N4—Ag2—O589.71 (13)C16—C17—H17A119.9
N1ii—Ag2—O5101.90 (12)C18—C17—H17A119.9
C22—N1—C11116.4 (4)N2—C18—C17123.5 (5)
C22—N1—Ag2iii122.2 (4)N2—C18—H18A118.3
C11—N1—Ag2iii121.4 (4)C17—C18—H18A118.3
C19—N2—C18116.5 (4)N2—C19—C20123.3 (5)
C19—N2—Ag1125.4 (3)N2—C19—H19A118.3
C18—N2—Ag1118.1 (3)C20—C19—H19A118.3
C23—N3—C34116.9 (4)C16—C20—C19119.1 (5)
C23—N3—Ag1119.2 (3)C16—C20—H20A120.4
C34—N3—Ag1123.9 (4)C19—C20—H20A120.4
C31—N4—C30115.7 (4)C13—C21—C22120.5 (5)
C31—N4—Ag2120.4 (3)C13—C21—H21A119.7
C30—N4—Ag2123.8 (3)C22—C21—H21A119.7
O3—S1—O2116.2 (3)N1—C22—C21123.0 (5)
O3—S1—O1114.0 (3)N1—C22—H22A118.5
O2—S1—O1113.6 (3)C21—C22—H22A118.5
O3—S1—C1104.3 (3)N3—C23—C24123.0 (5)
O2—S1—C1103.9 (3)N3—C23—H23A118.5
O1—S1—C1102.8 (3)C24—C23—H23A118.5
O6—S2—O4115.2 (2)C23—C24—C25120.2 (5)
O6—S2—O5115.1 (2)C23—C24—H24A119.9
O4—S2—O5113.9 (2)C25—C24—H24A119.9
O6—S2—C2102.7 (3)C33—C25—C24116.5 (4)
O4—S2—C2103.3 (3)C33—C25—C26121.7 (5)
O5—S2—C2104.4 (3)C24—C25—C26121.8 (5)
S2—O5—Ag2139.2 (2)C27—C26—C25116.1 (5)
F1—C1—F3106.8 (5)C27—C26—H26A108.3
F1—C1—F2107.1 (6)C25—C26—H26A108.3
F3—C1—F2106.9 (6)C27—C26—H26B108.3
F1—C1—S1112.8 (5)C25—C26—H26B108.3
F3—C1—S1112.0 (5)H26A—C26—H26B107.4
F2—C1—S1110.9 (4)C26—C27—C28121.5 (5)
F4—C2—F6110.2 (6)C26—C27—H27A107.0
F4—C2—F5109.1 (6)C28—C27—H27A107.0
F6—C2—F5105.4 (6)C26—C27—H27B107.0
F4—C2—S2113.9 (6)C28—C27—H27B107.0
F6—C2—S2109.2 (5)H27A—C27—H27B106.7
F5—C2—S2108.7 (5)C29—C28—C32116.4 (4)
N1—C11—C12122.8 (5)C29—C28—C27121.5 (5)
N1—C11—H11A118.6C32—C28—C27122.1 (5)
C12—C11—H11A118.6C28—C29—C30120.5 (4)
C13—C12—C11121.0 (5)C28—C29—H29A119.7
C13—C12—H12A119.5C30—C29—H29A119.7
C11—C12—H12A119.5N4—C30—C29123.6 (5)
C21—C13—C12116.3 (4)N4—C30—H30A118.2
C21—C13—C14122.2 (5)C29—C30—H30A118.2
C12—C13—C14121.5 (5)N4—C31—C32124.6 (5)
C15—C14—C13114.1 (4)N4—C31—H31A117.7
C15—C14—H14A108.7C32—C31—H31A117.7
C13—C14—H14A108.7C31—C32—C28119.2 (5)
C15—C14—H14B108.7C31—C32—H32A120.4
C13—C14—H14B108.7C28—C32—H32A120.4
H14A—C14—H14B107.6C25—C33—C34120.4 (5)
C14—C15—C16115.7 (4)C25—C33—H33A119.8
C14—C15—H15A108.3C34—C33—H33A119.8
C16—C15—H15A108.3N3—C34—C33123.0 (5)
C14—C15—H15B108.3N3—C34—H34A118.5
C16—C15—H15B108.3C33—C34—H34A118.5
H15A—C15—H15B107.4
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x2, y, z1; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C12H12N2)](CF3O3S)
Mr441.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.8575 (15), 15.195 (2), 20.974 (3)
β (°) 96.654 (4)
V3)3120.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.46 × 0.32 × 0.25
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.574, 0.692
No. of measured, independent and
observed [I > 2σ(I)] reflections
21114, 7176, 2940
Rint0.067
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.076, 0.95
No. of reflections7176
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.55

Computer programs: SMART (Siemens, 1994), SMART, SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ag1—N32.143 (3)Ag2—N42.166 (3)
Ag1—N22.155 (3)Ag2—N1ii2.167 (4)
Ag1—O4i2.758 (4)Ag2—O52.717 (3)
N3—Ag1—N2170.27 (15)N4—Ag2—N1ii161.97 (15)
N3—Ag1—O4i97.37 (15)N4—Ag2—O589.71 (13)
N2—Ag1—O4i88.59 (14)N1ii—Ag2—O5101.90 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x2, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds