Download citation
Download citation
link to html
Refinement of the structure of the Pccn polymorph of the title compound, [RuCl2(C2H6OS)4], using low-temperature data, has led to an increase in precision by a factor of 2-3 over the previous room-temperature results [Attia & Calligaris (1987). Acta Cryst. C43, 1426-1427] and those for the P21/n polymorph [Mercer & Trotter (1975). J. Chem. Soc. Dalton Trans. pp. 2480-2483; Alessio et al. (1988) Inorg. Chem. 27, 4099-4106]. The chloro ligands are cis, with Ru-Cl distances of 2.4165 (8) and 2.4352 (8) Å, and the di­methyl sulfoxide (DMSO) ligands trans to them are S-bonded, with Ru-S distances of 2.2717 (8) and 2.2734 (9) Å. One of the two mutually trans DMSO ligands is O-bonded, and the Ru-S distance trans to it is shortened, at 2.2480 (9) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011577/om6147sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011577/om6147Isup2.hkl
Contains datablock I

CCDC reference: 217360

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](S-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.088
  • Data-to-parameter ratio = 37.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

During the course of our studies of ruthenium complexes containing coordinated dimethyl sulfoxide and tetramethylene sulfoxide, mer-RuCl3(DMSO)3 was treated with 1,2-bis(diphenylphosphino)ethane (dppe) in the presence of excess DMSO in an attempt to introduce the dppe ligand onto the metal center. The resulting orange crystals were determined by crystal structure determination to be cis-RuCl2(DMSO)4, (I), for which both monoclinic (Mercer & Trotter, 1975; Alessio et al., 1988) and orthorhombic (Attia & Calligaris, 1987) polymorphs have been previously reported at room temperature. The sample reported here is identical to the orthorhombic polymorph, and refinement versus 120 K data has led to an increase in precision by a factor of 2.5–3.0, with excellent agreement. These results are also approximately twice as precise as the room-temperature results for the monoclinic (P21/n) polymorph. Of the four DMSO ligands, three are S-coordinated, including both trans to Cl. As reported by Mercer & Trotter (1975), the Ru—S distance trans to the O-bonded DMSO is significantly shortened, being more than 0.02 Å shorter than the other two. The S—O distance in the O-bonded DMSO ligand is indicative of less double bond character than the other three, being about 0.05 Å longer.

Alessio et al. (1991) have reported the structures of trans-RuCl4(DMSO)2, which has S-bonded DMSO ligands, and also mer-RuCl3(DMSO)3, which has one O-bonded DMSO. However, in that case, the O-bonded DMSO is trans to Cl rather than to S-bonded DMSO. That paper also reports a scheme for the reduction of mer-RuCl3(DMSO)3 to the title compound.

Experimental top

To 0.264 g, 0.597 mmol of mer-RuCl3(DMSO)3 dissolved in chloroform (10 ml) and 2 ml of DMSO were added 0.10 g, 0.25 mmol of solid dppe. The mixture was stirred for 24 h, yielding a brown solution. The solution was concentrated to one third of its volume on a rotary evaporator and was slowly evaporated at room temperature to yield orange crystals. The product was filtered, washed with diethyl ether and then vacuum dried (70% yield).

Refinement top

H atoms were placed in idealized positions, with C—H bond distances of 0.98 Å, utilizing difference maps in the expected toruses, and thereafter treated as riding, with a torsional parameter refined for each methyl group. Displacement parameters for H were assigned as Uiso = 1.5Ueq of the attached atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: Coordinates of Attia & Calligaris (1987); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The numbering scheme and ellipsoids at the 50% probability level.
cis-dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) top
Crystal data top
[RuCl2(C2H6OS)4]F(000) = 1968
Mr = 484.48Dx = 1.813 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 6991 reflections
a = 28.167 (7) Åθ = 2.5–33.1°
b = 10.817 (2) ŵ = 1.66 mm1
c = 11.648 (2) ÅT = 120 K
V = 3548.9 (13) Å3Fragment, orange
Z = 80.20 × 0.17 × 0.12 mm
Data collection top
KappaCCD (with Oxford Cryostream cooler)
diffractometer
6724 independent reflections
Radiation source: fine-focus sealed tube3830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scans with κ offsetsθmax = 33.2°, θmin = 2.8°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 4343
Tmin = 0.748, Tmax = 0.819k = 1616
25051 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0256P)2]
where P = (Fo2 + 2Fc2)/3
6724 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
[RuCl2(C2H6OS)4]V = 3548.9 (13) Å3
Mr = 484.48Z = 8
Orthorhombic, PccnMo Kα radiation
a = 28.167 (7) ŵ = 1.66 mm1
b = 10.817 (2) ÅT = 120 K
c = 11.648 (2) Å0.20 × 0.17 × 0.12 mm
Data collection top
KappaCCD (with Oxford Cryostream cooler)
diffractometer
6724 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
3830 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.819Rint = 0.085
25051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.95Δρmax = 0.86 e Å3
6724 reflectionsΔρmin = 0.95 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.125124 (9)0.45806 (2)0.326081 (19)0.01115 (6)
Cl10.08894 (3)0.40538 (8)0.50771 (6)0.02033 (19)
Cl20.20040 (3)0.40373 (8)0.41566 (6)0.01772 (18)
S10.12775 (3)0.65750 (8)0.37996 (6)0.01643 (17)
S20.05319 (3)0.47937 (8)0.23980 (6)0.01500 (18)
S30.16648 (3)0.49058 (8)0.16140 (6)0.01322 (17)
S40.12993 (3)0.16095 (8)0.35765 (6)0.01347 (17)
O10.14006 (8)0.7534 (2)0.29499 (18)0.0239 (6)
O20.03469 (9)0.6034 (2)0.2101 (2)0.0260 (6)
O30.14209 (8)0.5386 (2)0.05727 (16)0.0160 (5)
O40.11993 (7)0.2685 (2)0.27505 (17)0.0135 (5)
C110.07502 (13)0.7077 (3)0.4487 (3)0.0285 (9)
H11A0.08100.78640.48780.043*
H11B0.06500.64560.50490.043*
H11C0.05000.71890.39130.043*
C120.16782 (15)0.6762 (4)0.4977 (3)0.0378 (11)
H12A0.20020.65770.47230.057*
H12B0.15890.61960.55970.057*
H12C0.16630.76160.52560.057*
C210.00767 (12)0.4021 (4)0.3199 (3)0.0238 (8)
H21A0.00020.45080.38830.036*
H21B0.01900.32020.34330.036*
H21C0.02070.39300.27200.036*
C220.04970 (13)0.3886 (4)0.1133 (3)0.0236 (8)
H22A0.01750.39340.08180.035*
H22B0.05730.30250.13160.035*
H22C0.07240.42000.05650.035*
C310.19562 (13)0.3514 (3)0.1196 (3)0.0192 (8)
H31A0.17200.29150.09260.029*
H31B0.21270.31690.18560.029*
H31C0.21820.36920.05770.029*
C320.21743 (12)0.5869 (3)0.1818 (3)0.0214 (8)
H32A0.23690.58610.11200.032*
H32B0.23620.55570.24650.032*
H32C0.20710.67170.19800.032*
C410.17782 (12)0.0797 (3)0.2938 (3)0.0235 (8)
H41A0.17370.07820.21030.035*
H41B0.17850.00520.32320.035*
H41C0.20780.12110.31280.035*
C420.08438 (12)0.0547 (3)0.3193 (3)0.0177 (7)
H42A0.05360.08670.34490.027*
H42B0.09050.02520.35600.027*
H42C0.08400.04410.23570.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01338 (13)0.01069 (12)0.00938 (11)0.00118 (11)0.00019 (10)0.00063 (10)
Cl10.0294 (5)0.0186 (4)0.0130 (4)0.0019 (4)0.0052 (3)0.0019 (3)
Cl20.0177 (4)0.0185 (4)0.0169 (4)0.0008 (4)0.0052 (3)0.0027 (3)
S10.0220 (5)0.0114 (4)0.0158 (4)0.0018 (4)0.0022 (4)0.0005 (3)
S20.0134 (4)0.0152 (4)0.0164 (4)0.0017 (3)0.0001 (3)0.0030 (3)
S30.0137 (4)0.0138 (4)0.0122 (4)0.0010 (3)0.0001 (3)0.0019 (3)
S40.0157 (4)0.0117 (4)0.0130 (3)0.0006 (3)0.0014 (3)0.0013 (3)
O10.0312 (16)0.0134 (13)0.0272 (13)0.0011 (11)0.0036 (11)0.0036 (11)
O20.0238 (15)0.0149 (14)0.0393 (14)0.0036 (11)0.0079 (12)0.0046 (12)
O30.0190 (12)0.0190 (13)0.0102 (10)0.0003 (11)0.0005 (9)0.0045 (10)
O40.0165 (13)0.0108 (12)0.0131 (10)0.0004 (10)0.0035 (9)0.0004 (9)
C110.034 (2)0.015 (2)0.036 (2)0.0060 (17)0.0154 (18)0.0020 (17)
C120.052 (3)0.027 (2)0.034 (2)0.006 (2)0.024 (2)0.0146 (19)
C210.0134 (18)0.033 (2)0.0245 (17)0.0018 (16)0.0049 (15)0.0032 (17)
C220.019 (2)0.034 (2)0.0180 (17)0.0021 (17)0.0060 (14)0.0041 (17)
C310.023 (2)0.0175 (19)0.0171 (16)0.0074 (15)0.0052 (14)0.0025 (15)
C320.0159 (18)0.0226 (19)0.0256 (18)0.0075 (15)0.0001 (15)0.0056 (17)
C410.019 (2)0.021 (2)0.0310 (19)0.0048 (16)0.0025 (15)0.0044 (16)
C420.0187 (18)0.0153 (18)0.0191 (15)0.0032 (14)0.0011 (14)0.0037 (15)
Geometric parameters (Å, º) top
Ru1—O42.140 (2)C12—H12A0.98
Ru1—S12.2480 (9)C12—H12B0.98
Ru1—S22.2734 (9)C12—H12C0.98
Ru1—S32.2717 (8)C21—H21A0.98
Ru1—Cl12.4165 (8)C21—H21B0.98
Ru1—Cl22.4352 (8)C21—H21C0.98
S1—O11.475 (2)C22—H22A0.98
S1—C111.773 (3)C22—H22B0.98
S1—C121.787 (3)C22—H22C0.98
S2—O21.480 (3)C31—H31A0.98
S2—C221.774 (3)C31—H31B0.98
S2—C211.793 (3)C31—H31C0.98
S3—O31.488 (2)C32—H32A0.98
S3—C311.782 (3)C32—H32B0.98
S3—C321.789 (3)C32—H32C0.98
S4—O41.536 (2)C41—H41A0.98
S4—C411.773 (3)C41—H41B0.98
S4—C421.780 (3)C41—H41C0.98
C11—H11A0.98C42—H42A0.98
C11—H11B0.98C42—H42B0.98
C11—H11C0.98C42—H42C0.98
O4—Ru1—S1177.96 (6)S1—C12—H12A109.5
O4—Ru1—S387.07 (6)S1—C12—H12B109.5
S1—Ru1—S394.03 (3)H12A—C12—H12B109.5
O4—Ru1—S285.03 (6)S1—C12—H12C109.5
S1—Ru1—S293.18 (3)H12A—C12—H12C109.5
S3—Ru1—S293.90 (3)H12B—C12—H12C109.5
O4—Ru1—Cl189.34 (6)S2—C21—H21A109.5
S1—Ru1—Cl189.76 (3)S2—C21—H21B109.5
S3—Ru1—Cl1172.79 (3)H21A—C21—H21B109.5
S2—Ru1—Cl192.01 (3)S2—C21—H21C109.5
O4—Ru1—Cl286.98 (6)H21A—C21—H21C109.5
S1—Ru1—Cl294.78 (3)H21B—C21—H21C109.5
S3—Ru1—Cl287.29 (3)S2—C22—H22A109.5
S2—Ru1—Cl2171.85 (3)S2—C22—H22B109.5
Cl1—Ru1—Cl286.28 (3)H22A—C22—H22B109.5
O1—S1—C11106.51 (16)S2—C22—H22C109.5
O1—S1—C12106.67 (18)H22A—C22—H22C109.5
C11—S1—C1298.51 (19)H22B—C22—H22C109.5
O1—S1—Ru1119.70 (10)S3—C31—H31A109.5
C11—S1—Ru1113.11 (13)S3—C31—H31B109.5
C12—S1—Ru1110.10 (14)H31A—C31—H31B109.5
O2—S2—C22106.73 (16)S3—C31—H31C109.5
O2—S2—C21107.01 (16)H31A—C31—H31C109.5
C22—S2—C2197.75 (17)H31B—C31—H31C109.5
O2—S2—Ru1120.59 (11)S3—C32—H32A109.5
C22—S2—Ru1111.15 (12)S3—C32—H32B109.5
C21—S2—Ru1111.11 (12)H32A—C32—H32B109.5
O3—S3—C31106.55 (14)S3—C32—H32C109.5
O3—S3—C32105.99 (15)H32A—C32—H32C109.5
C31—S3—C3299.15 (18)H32B—C32—H32C109.5
O3—S3—Ru1120.37 (9)S4—C41—H41A109.5
C31—S3—Ru1109.62 (11)S4—C41—H41B109.5
C32—S3—Ru1112.92 (11)H41A—C41—H41B109.5
O4—S4—C41104.63 (14)S4—C41—H41C109.5
O4—S4—C42101.51 (14)H41A—C41—H41C109.5
C41—S4—C4297.06 (17)H41B—C41—H41C109.5
S4—O4—Ru1122.64 (12)S4—C42—H42A109.5
S1—C11—H11A109.5S4—C42—H42B109.5
S1—C11—H11B109.5H42A—C42—H42B109.5
H11A—C11—H11B109.5S4—C42—H42C109.5
S1—C11—H11C109.5H42A—C42—H42C109.5
H11A—C11—H11C109.5H42B—C42—H42C109.5
H11B—C11—H11C109.5
S3—Ru1—S1—O116.53 (12)S1—Ru1—S2—C21109.17 (14)
S2—Ru1—S1—O177.61 (12)S3—Ru1—S2—C21156.57 (14)
Cl1—Ru1—S1—O1169.61 (12)Cl1—Ru1—S2—C2119.30 (14)
Cl2—Ru1—S1—O1104.14 (12)O4—Ru1—S3—O396.81 (13)
S3—Ru1—S1—C11143.34 (14)S1—Ru1—S3—O381.48 (12)
S2—Ru1—S1—C1149.20 (14)S2—Ru1—S3—O311.99 (12)
Cl1—Ru1—S1—C1142.80 (14)Cl2—Ru1—S3—O3176.08 (12)
Cl2—Ru1—S1—C11129.05 (14)O4—Ru1—S3—C3127.21 (14)
S3—Ru1—S1—C12107.54 (16)S1—Ru1—S3—C31154.51 (13)
S2—Ru1—S1—C12158.31 (16)S2—Ru1—S3—C31112.03 (13)
Cl1—Ru1—S1—C1266.31 (16)Cl2—Ru1—S3—C3159.90 (13)
Cl2—Ru1—S1—C1219.94 (16)O4—Ru1—S3—C32136.72 (15)
O4—Ru1—S2—O2163.81 (13)S1—Ru1—S3—C3244.99 (14)
S1—Ru1—S2—O217.16 (12)S2—Ru1—S3—C32138.46 (14)
S3—Ru1—S2—O277.10 (12)Cl2—Ru1—S3—C3249.61 (14)
Cl1—Ru1—S2—O2107.03 (12)C41—S4—O4—Ru1119.66 (17)
O4—Ru1—S2—C2237.85 (15)C42—S4—O4—Ru1139.80 (15)
S1—Ru1—S2—C22143.12 (14)S3—Ru1—O4—S4133.58 (14)
S3—Ru1—S2—C2248.86 (14)S2—Ru1—O4—S4132.25 (14)
Cl1—Ru1—S2—C22127.01 (14)Cl1—Ru1—O4—S440.17 (14)
O4—Ru1—S2—C2169.86 (15)Cl2—Ru1—O4—S446.14 (13)

Experimental details

Crystal data
Chemical formula[RuCl2(C2H6OS)4]
Mr484.48
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)120
a, b, c (Å)28.167 (7), 10.817 (2), 11.648 (2)
V3)3548.9 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.20 × 0.17 × 0.12
Data collection
DiffractometerKappaCCD (with Oxford Cryostream cooler)
diffractometer
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.748, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
25051, 6724, 3830
Rint0.085
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.088, 0.95
No. of reflections6724
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.95

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), Coordinates of Attia & Calligaris (1987), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ru1—O42.140 (2)Ru1—Cl22.4352 (8)
Ru1—S12.2480 (9)S1—O11.475 (2)
Ru1—S22.2734 (9)S2—O21.480 (3)
Ru1—S32.2717 (8)S3—O31.488 (2)
Ru1—Cl12.4165 (8)S4—O41.536 (2)
O4—Ru1—S1177.96 (6)S3—Ru1—Cl287.29 (3)
S3—Ru1—S293.90 (3)Cl1—Ru1—Cl286.28 (3)
S2—Ru1—Cl192.01 (3)S4—O4—Ru1122.64 (12)
S3—Ru1—S1—O116.53 (12)S1—Ru1—S3—O381.48 (12)
S1—Ru1—S2—O217.16 (12)C41—S4—O4—Ru1119.66 (17)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds