Download citation
Download citation
link to html
The structure of the title compound, C19H20N2O6S, has been determined as part of an ongoing investigation into the preparation of bis-N-alkyl­ated amino acids for subsequent alkene cross-metathesis reactions to generate dynamic combinatorial libraries. The overall molecular conformation is stabilized by well defined intramolecular C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301256X/tk6115sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301256X/tk6115Isup2.hkl
Contains datablock I

CCDC reference: 217460

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.040
  • wR factor = 0.123
  • Data-to-parameter ratio = 11.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_368 Alert C Short C(sp2)-C(sp2) Bond C11 - C12 = 1.16 Ang. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 2796 Count of symmetry unique reflns 2637 Completeness (_total/calc) 106.03% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 159 Fraction of Friedel pairs measured 0.060 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The synthesis of a range of N-allyl substituted amino acids is desirable for the investigation of the biological applications of these molecules, as cross metathesis of the allyl moieties permits a combinatorial approach to the generation of libraries for biological screening. In this approach, both protection and activation of the amino acid nitrogen is required in order to facilitate subsequent high-yielding mono-allylation. The 2-nitrobenzenesulfonyl group (oNBS) is introduced prior to allylation and serves a dual role of protection and activation with the electron withdrawing effect of the oNBS group greatly increasing the acidity of the amino hydrogen.

The title compound, (I), crystallizes in the space group P212121 with one molecule in the asymmetric unit (Fig. 1). Molecules are separated by normal van der Waals distances. The bond lengths (Table 1) are in accord with conventional values (Allen et al., 1987). The conformational structure and shape of the molecules of (I) appear to be determined by a number of well defined intramolecular C—H···O interactions (Table 2) with, for example, the 2-nitrobenzenesulfonyl group 'spiralling' above the plane of the carboxylate group to bring nitro atom O2 into close proximity to the α carbon C7. It is of interest to note also in this structure, that the geometry about the amino N atom is almost trigonal planar with S1–N2–C10 = 116.7 (2)°, S1–N2–C7 = 120.5 (2)° and C7–N2–C10 = 118.8 (3)° (Σ = 355.9°).

Experimental top

Compound (I) was synthesized following published procedures (Reichwein et al. 2000). Allyl bromide (2.85 ml, 32.93 mmol) was added to a solution of 2-nitrobenzenesulfonyl-L-phenylalanine methyl ester (6.485 g, 17.8 mmol) and K2CO3 (4.98 g, 36.05 mmol) in anhydrous DMF (50 ml) and the mixture stirred at room temperature for 16 h. Water (40 ml) was added and the mixture extracted from ether (3 × 30 ml), the combined extracts washed with brine (3 × 40 ml) and dried over MgSO4 before solvent was removed under reduced pressure. The resultant yellow oil afforded colourless crystals on standing. Yield: 6.51 g (90.4%); m.p. 326–327 K; 1H NMR (CDCl3, 200 MHz, p.p.m.): 7.54–7.85 [m, 4H, CHarom(oNBS)], 7.18–7.28 (m, 5H, CHaromPhe), 5.70–5.85(m, 1H, HC), 5.07–5.28 (m, 2H, CH2), 4.91 (t, 1H, J = 7.4 Hz,αCH), 3.85–4.20 (m, 2H, βCH2), 3.55 (s, 3H, OCH3), 3.36 (dd, 1H, 2J = 14 Hz, 3J = 7.4 Hz, NCH of NCH2), 3.04 (dd 1H,2J = 14 Hz, 3J = 7.4 Hz, NCH of NCH2).

Refinement top

H atoms were constrained as riding atoms, with C—H distances set to 0.95 Å.

Computing details top

Data collection: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON.

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
N-Allyl-N-(2-nitrobenzenesulfonyl)-L-phenylalanine methyl ester top
Crystal data top
C19H20N2O6SF(000) = 848
Mr = 404.44Dx = 1.344 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.2756 (15) Åθ = 12.6–17.0°
b = 27.430 (4) ŵ = 0.20 mm1
c = 7.8548 (12) ÅT = 295 K
V = 1998.5 (5) Å3Prismatic, colorless
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.025
Radiation source: Rigaku rotating anodeθmax = 27.5°, θmin = 2.7°
Graphite monochromatorh = 512
ω scansk = 035
3271 measured reflectionsl = 410
2796 independent reflections3 standard reflections every 150 reflections
2049 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.3341P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.035
S = 1.03Δρmax = 0.56 e Å3
2796 reflectionsΔρmin = 0.29 e Å3
254 parametersExtinction correction: SHELXL97, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.0066 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 0000 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.15 (14)
Crystal data top
C19H20N2O6SV = 1998.5 (5) Å3
Mr = 404.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2756 (15) ŵ = 0.20 mm1
b = 27.430 (4) ÅT = 295 K
c = 7.8548 (12) Å0.50 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.025
3271 measured reflections3 standard reflections every 150 reflections
2796 independent reflections intensity decay: 0.4%
2049 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.56 e Å3
S = 1.03Δρmin = 0.29 e Å3
2796 reflectionsAbsolute structure: Flack (1983), 0000 Friedel pairs
254 parametersAbsolute structure parameter: 0.15 (14)
0 restraints
Special details top

Experimental. The scan width was (1.26 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01663 (8)0.84200 (3)0.24411 (12)0.0509 (3)
O10.1434 (6)0.77727 (15)0.1735 (5)0.134 (2)
O20.2827 (4)0.82963 (11)0.0546 (4)0.0937 (12)
O30.0051 (3)0.85613 (8)0.0714 (3)0.0629 (8)
O40.1049 (2)0.83638 (9)0.3537 (4)0.0699 (9)
O50.4009 (3)0.84493 (10)0.3332 (4)0.0739 (10)
O60.4779 (3)0.90384 (10)0.1574 (4)0.0741 (10)
N10.2067 (4)0.79348 (13)0.0523 (5)0.0760 (14)
N20.1220 (3)0.88161 (10)0.3329 (4)0.0497 (8)
C10.1051 (3)0.78451 (11)0.2432 (5)0.0497 (9)
C20.1883 (4)0.76690 (12)0.1099 (5)0.0557 (11)
C30.2575 (5)0.72288 (14)0.1207 (7)0.0763 (14)
C40.2438 (5)0.69531 (14)0.2671 (8)0.0880 (18)
C50.1564 (6)0.71074 (16)0.3955 (7)0.0840 (17)
C60.0871 (4)0.75482 (13)0.3848 (5)0.0643 (12)
C70.2334 (3)0.90632 (11)0.2334 (5)0.0494 (9)
C80.3795 (3)0.88076 (13)0.2506 (5)0.0563 (11)
C90.6213 (4)0.8825 (2)0.1555 (8)0.102 (2)
C100.1396 (4)0.87808 (16)0.5190 (5)0.0697 (14)
C110.0483 (6)0.9098 (2)0.6238 (8)0.106 (2)
C120.0369 (6)0.9393 (2)0.5925 (11)0.129 (3)
C130.2447 (4)0.96032 (12)0.2792 (5)0.0607 (13)
C140.1219 (3)0.99312 (11)0.2214 (5)0.0524 (10)
C150.1210 (4)1.04051 (13)0.2820 (5)0.0636 (13)
C160.0190 (5)1.07375 (12)0.2293 (6)0.0729 (13)
C170.0857 (5)1.06013 (14)0.1133 (7)0.0763 (14)
C180.0876 (4)1.01278 (14)0.0552 (6)0.0710 (14)
C190.0167 (4)0.97958 (12)0.1064 (5)0.0616 (11)
H30.312900.711200.027800.0930*
H40.295900.665700.278000.1110*
H50.144600.691100.493700.1030*
H60.025400.764900.474900.0780*
H70.206600.904200.116800.0610*
H110.062600.905300.743100.1280*
H150.192001.050500.361000.0790*
H160.021801.106200.271200.0900*
H170.156001.082800.076400.0930*
H180.160001.002600.023100.0870*
H190.015900.947400.062400.0750*
H910.613700.848300.137800.1250*
H920.668300.888900.259400.1250*
H930.675100.896500.063800.1250*
H1010.237500.886000.545000.0840*
H1020.120900.845500.551900.0840*
H1210.059400.946300.476700.1600*
H1220.085700.955900.681200.1600*
H1310.251600.962800.398700.0740*
H1320.330800.972700.228100.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0425 (4)0.0501 (4)0.0600 (5)0.0024 (3)0.0080 (4)0.0025 (4)
O10.222 (5)0.118 (3)0.062 (2)0.044 (3)0.016 (3)0.014 (2)
O20.113 (2)0.086 (2)0.082 (2)0.0277 (19)0.021 (2)0.0041 (17)
O30.0675 (15)0.0527 (12)0.0686 (15)0.0018 (12)0.0266 (15)0.0045 (11)
O40.0415 (12)0.0713 (16)0.097 (2)0.0031 (12)0.0092 (14)0.0022 (16)
O50.0606 (14)0.0803 (17)0.0807 (19)0.0236 (14)0.0014 (14)0.0164 (16)
O60.0441 (12)0.0945 (19)0.0837 (18)0.0106 (14)0.0081 (15)0.0152 (16)
N10.102 (3)0.069 (2)0.057 (2)0.004 (2)0.008 (2)0.0095 (18)
N20.0432 (14)0.0523 (14)0.0537 (16)0.0001 (12)0.0019 (14)0.0036 (13)
C10.0442 (15)0.0498 (15)0.0552 (18)0.0034 (13)0.0077 (19)0.0044 (18)
C20.059 (2)0.0510 (18)0.057 (2)0.0027 (16)0.0014 (19)0.0029 (16)
C30.070 (2)0.058 (2)0.101 (3)0.008 (2)0.003 (3)0.015 (3)
C40.088 (3)0.053 (2)0.123 (4)0.017 (2)0.013 (4)0.016 (3)
C50.094 (3)0.067 (3)0.091 (3)0.004 (2)0.013 (3)0.028 (2)
C60.064 (2)0.066 (2)0.063 (2)0.0052 (19)0.001 (2)0.013 (2)
C70.0395 (14)0.0507 (15)0.0579 (19)0.0037 (12)0.0053 (17)0.0024 (18)
C80.0477 (17)0.0659 (19)0.0552 (19)0.0088 (15)0.003 (2)0.006 (2)
C90.046 (2)0.152 (5)0.109 (4)0.023 (3)0.009 (3)0.007 (4)
C100.064 (2)0.091 (3)0.054 (2)0.007 (2)0.001 (2)0.010 (2)
C110.077 (3)0.136 (5)0.105 (4)0.022 (3)0.029 (3)0.053 (4)
C120.068 (3)0.131 (5)0.189 (7)0.001 (3)0.023 (4)0.057 (5)
C130.0480 (16)0.0551 (17)0.079 (3)0.0026 (15)0.0101 (19)0.002 (2)
C140.0490 (16)0.0473 (16)0.061 (2)0.0027 (14)0.0091 (18)0.0008 (16)
C150.065 (2)0.0548 (17)0.071 (3)0.0050 (17)0.001 (2)0.0098 (19)
C160.082 (2)0.0497 (17)0.087 (3)0.0072 (19)0.013 (3)0.008 (2)
C170.072 (2)0.056 (2)0.101 (3)0.016 (2)0.008 (3)0.007 (2)
C180.064 (2)0.065 (2)0.084 (3)0.007 (2)0.011 (2)0.001 (2)
C190.057 (2)0.0518 (18)0.076 (2)0.0070 (16)0.007 (2)0.0026 (18)
Geometric parameters (Å, º) top
S1—O31.425 (3)C15—C161.378 (6)
S1—O41.427 (3)C16—C171.383 (7)
S1—N21.619 (3)C17—C181.377 (6)
S1—C11.778 (3)C18—C191.388 (5)
O1—N11.204 (6)C3—H30.9483
O2—N11.217 (5)C4—H40.9490
O5—C81.194 (5)C5—H50.9472
O6—C81.330 (4)C6—H60.9512
O6—C91.453 (5)C7—H70.9508
N1—C21.478 (5)C9—H910.9510
N2—C71.462 (4)C9—H920.9418
N2—C101.474 (5)C9—H930.9567
C1—C21.388 (5)C10—H1010.9558
C1—C61.389 (5)C10—H1020.9463
C2—C31.370 (5)C11—H110.9544
C3—C41.382 (8)C12—H1210.9528
C4—C51.361 (8)C12—H1220.9474
C5—C61.372 (6)C13—H1310.9433
C7—C81.532 (4)C13—H1320.9562
C7—C131.528 (5)C15—H150.9454
C10—C111.467 (7)C16—H160.9494
C11—C121.157 (8)C17—H170.9465
C13—C141.521 (5)C18—H180.9525
C14—C151.384 (5)C19—H190.9480
C14—C191.381 (5)
S1···O23.422 (4)C15···C11iii3.579 (7)
O1···O33.206 (5)C16···O6viii3.418 (6)
O2···O32.938 (5)C17···C12x3.504 (7)
O2···O63.193 (4)C19···O33.403 (4)
O2···S13.422 (4)C19···N23.368 (5)
O2···C82.919 (5)C1···H1022.9495
O2···C73.123 (5)C6···H1022.8298
O3···O22.938 (5)C7···H192.6728
O3···O13.206 (5)C8···H1012.6651
O3···N12.785 (4)C10···H1312.7152
O3···C193.403 (4)C11···H1312.9658
O4···C9i3.236 (5)C12···H17ix2.9151
O4···C4ii3.405 (7)C13···H1012.9188
O4···C113.252 (6)C14···H131iii3.0436
O4···C5ii3.233 (6)C14···H1212.9153
O5···C102.972 (5)C15···H101iii3.0417
O5···C13.282 (4)C16···H101iii2.9010
O5···C23.398 (5)C19···H72.7175
O5···N22.776 (4)H3···O12.8734
O6···C16iii3.418 (6)H3···O3xi2.6207
O6···O23.193 (4)H5···O4vi2.7210
O1···H32.8734H5···O5ii2.8169
O1···H102iv2.8633H6···O42.4923
O2···H16iii2.8738H6···H1022.4573
O2···H72.5485H7···O22.5485
O3···H72.3920H7···O32.3920
O3···H192.5121H7···C192.7175
O3···H3v2.6207H7···H192.1715
O4···H5ii2.7210H7···H15iii2.5428
O4···H1022.6216H15···H1312.4860
O4···H92i2.6551H15···H7viii2.5428
O4···H62.4923H16···O2viii2.8738
O5···H1012.5167H17···C12x2.9151
O5···H912.5021H19···O32.5121
O5···H922.8183H19···C72.6728
O5···H5vi2.8169H19···H72.1715
O6···H1322.3954H91···O52.5021
N1···O32.785 (4)H92···O4vii2.6551
N2···O52.776 (4)H92···O52.8183
N2···C193.368 (5)H101···O52.5167
N2···H1212.6936H101···C82.6651
C1···O53.282 (4)H101···C132.9188
C2···O53.398 (5)H101···H1312.4032
C4···O4vi3.405 (7)H101···C15viii3.0417
C5···O4vi3.233 (6)H101···C16viii2.9010
C6···C103.575 (6)H102···O1xii2.8633
C7···O23.123 (5)H102···O42.6216
C8···O22.919 (5)H102···C12.9495
C9···O4vii3.236 (5)H102···C62.8298
C10···C63.575 (6)H102···H62.4573
C10···O52.972 (5)H121···N22.6936
C11···C133.545 (7)H121···C142.9153
C11···O43.252 (6)H131···C102.7152
C11···C15viii3.579 (7)H131···C112.9658
C12···C17ix3.504 (7)H131···H152.4860
C12···C143.584 (9)H131···H1012.4032
C13···C113.545 (7)H131···C14viii3.0436
C14···C123.584 (9)H132···O62.3954
O3—S1—O4119.47 (16)C4—C3—H3120.34
O3—S1—N2108.23 (15)C3—C4—H4119.77
O3—S1—C1107.62 (17)C5—C4—H4120.16
O4—S1—N2106.83 (16)C4—C5—H5119.69
O4—S1—C1105.74 (15)C6—C5—H5119.80
N2—S1—C1108.56 (15)C1—C6—H6119.85
C8—O6—C9116.2 (3)C5—C6—H6119.50
O1—N1—O2124.9 (4)N2—C7—H7107.56
O1—N1—C2116.3 (4)C8—C7—H7106.75
O2—N1—C2118.8 (4)C13—C7—H7107.70
S1—N2—C7120.5 (2)O6—C9—H91109.33
S1—N2—C10116.7 (2)O6—C9—H92109.86
C7—N2—C10118.8 (3)O6—C9—H93108.87
S1—C1—C2124.7 (3)H91—C9—H92110.18
S1—C1—C6117.5 (3)H91—C9—H93108.94
C2—C1—C6117.8 (3)H92—C9—H93109.64
N1—C2—C1122.9 (3)N2—C10—H101107.59
N1—C2—C3115.7 (4)N2—C10—H102108.21
C1—C2—C3121.4 (4)C11—C10—H101107.08
C2—C3—C4119.4 (4)C11—C10—H102107.52
C3—C4—C5120.1 (4)H101—C10—H102109.30
C4—C5—C6120.5 (5)C10—C11—H11113.20
C1—C6—C5120.6 (4)C12—C11—H11113.19
N2—C7—C8111.5 (3)C11—C12—H121119.55
N2—C7—C13111.8 (3)C11—C12—H122120.40
C8—C7—C13111.2 (3)H121—C12—H122120.04
O5—C8—O6125.2 (3)C7—C13—H131107.99
O5—C8—C7124.9 (3)C7—C13—H132107.62
O6—C8—C7109.9 (3)C14—C13—H131107.77
N2—C10—C11117.0 (4)C14—C13—H132106.87
C10—C11—C12133.6 (7)H131—C13—H132109.60
C7—C13—C14116.9 (3)C14—C15—H15119.58
C13—C14—C15117.2 (3)C16—C15—H15118.93
C13—C14—C19124.4 (3)C15—C16—H16119.84
C15—C14—C19118.2 (3)C17—C16—H16120.06
C14—C15—C16121.5 (3)C16—C17—H17120.53
C15—C16—C17120.1 (3)C18—C17—H17120.63
C16—C17—C18118.8 (4)C17—C18—H18119.98
C17—C18—C19120.9 (4)C19—C18—H18119.09
C14—C19—C18120.4 (3)C14—C19—H19119.64
C2—C3—H3120.26C18—C19—H19119.99
O3—S1—N2—C732.1 (3)C6—C1—C2—N1175.4 (3)
O3—S1—N2—C10170.5 (2)C6—C1—C2—C33.7 (5)
O4—S1—N2—C7161.9 (2)C2—C1—C6—C53.6 (5)
O4—S1—N2—C1040.7 (3)S1—C1—C6—C5177.6 (3)
C1—S1—N2—C784.5 (3)N1—C2—C3—C4178.9 (4)
C1—S1—N2—C1072.9 (3)C1—C2—C3—C40.3 (6)
O3—S1—C1—C223.9 (3)C2—C3—C4—C53.3 (7)
O3—S1—C1—C6154.8 (3)C3—C4—C5—C63.4 (8)
O4—S1—C1—C2152.6 (3)C4—C5—C6—C10.2 (7)
O4—S1—C1—C626.1 (3)N2—C7—C8—O6179.4 (3)
N2—S1—C1—C293.1 (3)N2—C7—C8—O50.6 (5)
N2—S1—C1—C688.2 (3)C13—C7—C8—O655.0 (4)
C9—O6—C8—O51.2 (6)N2—C7—C13—C1471.4 (4)
C9—O6—C8—C7177.6 (4)C8—C7—C13—C14163.2 (3)
O2—N1—C2—C3107.6 (4)C13—C7—C8—O5126.2 (4)
O1—N1—C2—C1106.5 (5)N2—C10—C11—C122.0 (9)
O1—N1—C2—C372.7 (5)C7—C13—C14—C15171.3 (3)
O2—N1—C2—C173.3 (5)C7—C13—C14—C1912.3 (5)
S1—N2—C7—C895.7 (3)C13—C14—C19—C18177.0 (4)
S1—N2—C7—C13139.1 (3)C15—C14—C19—C180.7 (6)
C10—N2—C7—C861.3 (4)C13—C14—C15—C16176.2 (4)
C7—N2—C10—C11105.9 (4)C19—C14—C15—C160.4 (6)
S1—N2—C10—C1196.3 (4)C14—C15—C16—C170.0 (7)
C10—N2—C7—C1364.0 (4)C15—C16—C17—C181.4 (7)
S1—C1—C2—N13.2 (5)C16—C17—C18—C192.5 (7)
S1—C1—C2—C3177.7 (3)C17—C18—C19—C142.1 (6)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+2, z1/2; (iv) x, y, z1; (v) x1/2, y+3/2, z; (vi) x+1/2, y+3/2, z+1; (vii) x+1, y, z; (viii) x+1/2, y+2, z+1/2; (ix) x1/2, y+2, z+1/2; (x) x1/2, y+2, z1/2; (xi) x+1/2, y+3/2, z; (xii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.952.492.870 (4)104
C7—H7···O20.952.553.123 (5)119
C7—H7···O30.952.392.900 (4)113
C19—H19···O30.952.513.403 (4)157
C10—H101···O50.962.522.972 (5)109
C13—H132···O60.962.402.827 (5)107

Experimental details

Crystal data
Chemical formulaC19H20N2O6S
Mr404.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)9.2756 (15), 27.430 (4), 7.8548 (12)
V3)1998.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3271, 2796, 2049
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.03
No. of reflections2796
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.29
Absolute structureFlack (1983), 0000 Friedel pairs
Absolute structure parameter0.15 (14)

Computer programs: MSC/AFC7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999), MSC/AFC7 Diffractometer Control Software for Windows, TEXSAN for Windows (Molecular Structure Corporation, 1997-2001), TEXSAN for Windows and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2001) and ORTEP-3 (Farrugia, 1997), TEXSAN for Windows and PLATON.

Selected geometric parameters (Å, º) top
S1—O31.425 (3)O6—C91.453 (5)
S1—O41.427 (3)N1—C21.478 (5)
S1—N21.619 (3)N2—C71.462 (4)
S1—C11.778 (3)N2—C101.474 (5)
O1—N11.204 (6)C7—C131.528 (5)
O2—N11.217 (5)C10—C111.467 (7)
O5—C81.194 (5)C11—C121.157 (8)
O6—C81.330 (4)C13—C141.521 (5)
O3—S1—O4119.47 (16)S1—C1—C2124.7 (3)
O3—S1—N2108.23 (15)S1—C1—C6117.5 (3)
O3—S1—C1107.62 (17)C2—C1—C6117.8 (3)
O4—S1—N2106.83 (16)N1—C2—C1122.9 (3)
O4—S1—C1105.74 (15)N1—C2—C3115.7 (4)
N2—S1—C1108.56 (15)N2—C7—C8111.5 (3)
C8—O6—C9116.2 (3)N2—C7—C13111.8 (3)
O1—N1—O2124.9 (4)C8—C7—C13111.2 (3)
O1—N1—C2116.3 (4)O5—C8—O6125.2 (3)
O2—N1—C2118.8 (4)O5—C8—C7124.9 (3)
S1—N2—C7120.5 (2)O6—C8—C7109.9 (3)
S1—N2—C10116.7 (2)N2—C10—C11117.0 (4)
C7—N2—C10118.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O40.952.492.870 (4)104
C7—H7···O20.952.553.123 (5)119
C7—H7···O30.952.392.900 (4)113
C19—H19···O30.952.513.403 (4)157
C10—H101···O50.962.522.972 (5)109
C13—H132···O60.962.402.827 (5)107
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds