Download citation
Download citation
link to html
The title compound, C18H26N4O2S2, lies about a crystallographic inversion centre. The crystal packing shows intermolecular C—H...O and N—H...S interactions, the latter giving rise to the formation of dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018270/bt6329sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018270/bt6329Isup2.hkl
Contains datablock I

CCDC reference: 222889

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.032
  • wR factor = 0.090
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.99
Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C5 = 5.44 su PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C18 H26 N4 O2 S2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I), is another example of our newly synthesized thiourea derivatives which show interesting complexation capacity. The centre of the molecule lies on a crystallographic inversion centre and thus the two thiourea moieties adopt anti position. The planes of the benzoyl ring and the thiourea group N2CS are almost perpendicular with an angle of 89.0 (1)°. The corresponding torsion angles are N2—C6—C7—C8 = 160.4 (1)°, C6—N2—C5—S1 = 108.3 (1)° and O1—C6—C7—C8 = 154.8 (1)°. Prominent bond lengths are in the expected range, viz. C5—S1 = 1.6660 (13) Å, C6—O1 = 1.2185 (16) Å, C5—N2 = 1.4173 (16) Å and C5—N1 = 1.3214 (17) Å and compare well with the related distances of 1,1-diethyl-3-(4-methylbenzoyl)thiourea (Morales et al., 1997) or N-benzoyl-N'-methyl-N'-phenylthiourea (Shanmuga Sundara Raj et al., 1999). In the crystal structure (Fig. 2), molecules form dimers through strong intermolecular N2—H2···S1(-x + 1, −y, −z + 2) hydrogen bonds with H···S = 2.37 Å and N—H.·S = 171.9°. Additional intermolecular interactions are C2—H2B.·O1(x − 0.5, −y + 0.5, z − 0.5) with H.·O = 2.33 Å and C—H.·O = 151.9°. An intramolecular hydrogen bond is formed by C2—H2A.·N2 with H.·N = 2.30 Å and C—H.·N = 105.3°. All these values are normalized for N—H = 1.03 Å and C—H = 1.08 Å.

Experimental top

A solution of 2.5 mmol terephthalyldichlorid in 125 ml acetone was added to 5 mmol KSCN in 25 acetone solution. The mixture was stirred for 30 min at 313 K and the cooled to room temperature. Afterwards a solution of 5 mmol diethylamine in 25 ml acetone was added dropwise and stirring was continued for 2 h. The yellowish precipitate was recrystallized from dichloromethane–ethanol (1:1).

Refinement top

The H atom bonded to N2 was refined freely. Other H atoms were placed at calculated positions, riding on their attached C atoms, with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3). CH3 groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (A) 1 − x, −y, 3 − z.]
[Figure 2] Fig. 2. Packing diagram, viewed along [100]. Intermolecular hydrogen bonding is indicated by dashed lines.
3-[4-(3,3-Diethylthioureidocarbonoyl)benzoyl]-1,1-diethylthiourea top
Crystal data top
C18H26N4O2S2F(000) = 420
Mr = 394.55Dx = 1.332 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7980 (7) ÅCell parameters from 3822 reflections
b = 15.2735 (16) Åθ = 2.5–28.3°
c = 10.0275 (10) ŵ = 0.29 mm1
β = 109.168 (1)°T = 173 K
V = 983.43 (17) Å3Prism, colourless
Z = 20.32 × 0.25 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1991 independent reflections
Radiation source: sealed tube1821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.890, Tmax = 0.973k = 1917
5476 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2868P]
where P = (Fo2 + 2Fc2)/3
1991 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H26N4O2S2V = 983.43 (17) Å3
Mr = 394.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7980 (7) ŵ = 0.29 mm1
b = 15.2735 (16) ÅT = 173 K
c = 10.0275 (10) Å0.32 × 0.25 × 0.12 mm
β = 109.168 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1821 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.973Rint = 0.028
5476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
1991 reflectionsΔρmin = 0.17 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77404 (6)0.06233 (2)0.98444 (4)0.03319 (14)
O10.86306 (15)0.12206 (6)1.37451 (10)0.0304 (2)
N10.70776 (16)0.21277 (7)1.09557 (11)0.0224 (2)
N20.59341 (17)0.08783 (7)1.17977 (11)0.0230 (2)
H20.512 (3)0.0471 (11)1.1406 (18)0.028 (4)*
C10.7579 (3)0.32788 (10)1.28056 (17)0.0378 (4)
H1A0.85840.29111.35060.057*
H1B0.68130.36401.32770.057*
H1C0.83200.36581.23410.057*
C20.6067 (2)0.27036 (9)1.17150 (14)0.0271 (3)
H2A0.52920.23381.21890.032*
H2B0.50460.30811.10220.032*
C31.0514 (2)0.25416 (10)1.07891 (17)0.0365 (4)
H3A1.09190.28691.16790.055*
H3B1.11790.28031.01530.055*
H3C1.09610.19311.09780.055*
C40.8172 (2)0.25757 (9)1.01070 (15)0.0286 (3)
H4A0.77200.31950.99750.034*
H4B0.77840.22990.91630.034*
C50.69020 (18)0.12658 (8)1.08884 (13)0.0218 (3)
C60.6959 (2)0.08575 (8)1.32130 (13)0.0222 (3)
C70.5907 (2)0.03932 (8)1.41005 (13)0.0215 (3)
C80.3763 (2)0.02678 (8)1.36614 (13)0.0232 (3)
H8A0.29190.04511.27470.028*
C90.7130 (2)0.01252 (8)1.54358 (14)0.0237 (3)
H9A0.85940.02121.57330.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0368 (2)0.0331 (2)0.0372 (2)0.00868 (14)0.02230 (18)0.01086 (14)
O10.0275 (5)0.0366 (5)0.0248 (5)0.0086 (4)0.0055 (4)0.0035 (4)
N10.0233 (5)0.0244 (5)0.0192 (5)0.0031 (4)0.0065 (4)0.0023 (4)
N20.0258 (6)0.0236 (5)0.0205 (5)0.0073 (4)0.0088 (5)0.0018 (4)
C10.0455 (9)0.0303 (7)0.0361 (9)0.0035 (6)0.0111 (7)0.0066 (6)
C20.0276 (7)0.0251 (6)0.0280 (7)0.0028 (5)0.0085 (6)0.0022 (5)
C30.0297 (8)0.0424 (8)0.0375 (8)0.0105 (6)0.0113 (6)0.0064 (6)
C40.0311 (7)0.0306 (7)0.0248 (7)0.0061 (5)0.0099 (6)0.0074 (5)
C50.0191 (6)0.0269 (6)0.0185 (6)0.0043 (5)0.0048 (5)0.0001 (5)
C60.0254 (6)0.0201 (6)0.0222 (6)0.0001 (5)0.0093 (5)0.0005 (5)
C70.0276 (6)0.0180 (6)0.0211 (6)0.0001 (5)0.0109 (5)0.0010 (5)
C80.0266 (6)0.0231 (6)0.0195 (6)0.0013 (5)0.0069 (5)0.0009 (5)
C90.0243 (6)0.0233 (6)0.0244 (6)0.0002 (5)0.0090 (5)0.0002 (5)
Geometric parameters (Å, º) top
S1—C51.6660 (13)C3—C41.513 (2)
O1—C61.2185 (16)C3—H3A0.9800
N1—C51.3214 (17)C3—H3B0.9800
N1—C41.4705 (16)C3—H3C0.9800
N1—C21.4726 (17)C4—H4A0.9900
N2—C61.3606 (17)C4—H4B0.9900
N2—C51.4173 (16)C6—C71.4915 (17)
N2—H20.840 (17)C7—C91.3857 (18)
C1—C21.512 (2)C7—C81.3905 (18)
C1—H1A0.9800C8—C9i1.3819 (18)
C1—H1B0.9800C8—H8A0.9500
C1—H1C0.9800C9—C8i1.3819 (18)
C2—H2A0.9900C9—H9A0.9500
C2—H2B0.9900
C5—N1—C4119.24 (11)H3B—C3—H3C109.5
C5—N1—C2124.88 (11)N1—C4—C3112.31 (11)
C4—N1—C2115.58 (10)N1—C4—H4A109.1
C6—N2—C5119.59 (10)C3—C4—H4A109.1
C6—N2—H2120.3 (11)N1—C4—H4B109.1
C5—N2—H2112.5 (11)C3—C4—H4B109.1
C2—C1—H1A109.5H4A—C4—H4B107.9
C2—C1—H1B109.5N1—C5—N2115.88 (11)
H1A—C1—H1B109.5N1—C5—S1125.10 (10)
C2—C1—H1C109.5N2—C5—S1119.02 (9)
H1A—C1—H1C109.5O1—C6—N2122.06 (12)
H1B—C1—H1C109.5O1—C6—C7121.05 (12)
N1—C2—C1113.54 (11)N2—C6—C7116.85 (11)
N1—C2—H2A108.9C9—C7—C8119.94 (12)
C1—C2—H2A108.9C9—C7—C6117.64 (11)
N1—C2—H2B108.9C8—C7—C6122.32 (11)
C1—C2—H2B108.9C9i—C8—C7119.52 (12)
H2A—C2—H2B107.7C9i—C8—H8A120.2
C4—C3—H3A109.5C7—C8—H8A120.2
C4—C3—H3B109.5C8i—C9—C7120.53 (12)
H3A—C3—H3B109.5C8i—C9—H9A119.7
C4—C3—H3C109.5C7—C9—H9A119.7
H3A—C3—H3C109.5
C5—N1—C2—C1123.57 (14)C5—N2—C6—O15.64 (19)
C4—N1—C2—C162.86 (15)C5—N2—C6—C7176.43 (11)
C5—N1—C4—C380.55 (15)O1—C6—C7—C921.67 (18)
C2—N1—C4—C3105.50 (14)N2—C6—C7—C9160.38 (12)
C4—N1—C5—N2176.47 (10)O1—C6—C7—C8154.82 (13)
C2—N1—C5—N210.18 (17)N2—C6—C7—C823.14 (17)
C4—N1—C5—S12.96 (17)C9—C7—C8—C9i0.1 (2)
C2—N1—C5—S1170.40 (9)C6—C7—C8—C9i176.48 (11)
C6—N2—C5—N171.19 (15)C8—C7—C9—C8i0.1 (2)
C6—N2—C5—S1108.27 (12)C6—C7—C9—C8i176.64 (11)
Symmetry code: (i) x+1, y, z+3.

Experimental details

Crystal data
Chemical formulaC18H26N4O2S2
Mr394.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.7980 (7), 15.2735 (16), 10.0275 (10)
β (°) 109.168 (1)
V3)983.43 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.32 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.890, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5476, 1991, 1821
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.06
No. of reflections1991
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: SMART (Bruker, 2002), SMART, SAINT (Bruker, 2002), SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C51.6660 (13)N2—C61.3606 (17)
O1—C61.2185 (16)N2—C51.4173 (16)
N1—C51.3214 (17)C6—C71.4915 (17)
C6—N2—C5119.59 (10)O1—C6—N2122.06 (12)
N1—C5—N2115.88 (11)O1—C6—C7121.05 (12)
N1—C5—S1125.10 (10)N2—C6—C7116.85 (11)
N2—C5—S1119.02 (9)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds