Download citation
Download citation
link to html
N-(2-Naphthyl­oxy­methyl­carbonyl)­pyrrolidine, C16H17NO2, is a potential antiamnesic agent. In the solid state, the pyrrolidine ring adopts an envelope conformation. Except for the atom of the envelope flap, the entire mol­ecule is essentially planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017987/cv6222sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017987/cv6222Isup2.hkl
Contains datablock I

CCDC reference: 222885

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.052
  • wR factor = 0.144
  • Data-to-parameter ratio = 21.4

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The conformation of molecules with anti-amnesic activity has attracted considerable interest (Amato et al., 1991). The pyrrolidine moiety is a requisite for several active compounds currently used in the therapy of pathological brain-aging phenomena (Piracetam, Oxyracetam and Pramiracetam). The ring-extended N-analogues of 2-pyrrolidinone, viz. 2-aryl-3-piperazinone compounds, have been found to possess the characteristic nootropic pharmacological profile (Amato et al., 1991). The present paper reports the structure and conformation of the title compound, (I), which was determined as a continuation of the investigation of a new class of anti-amnesic agents (Thamotharan, Parthasarathi, Gupta et al., 2003a,b,c; Thamotharan, Parthasarathi, Malik et al., 2003a,b).

Fig. 1 shows a view of the molecule of (I), with the atomic numbering scheme. The bond lengths and angles in (I) are comparable with those in the related structures of 1-(2-naphthyloxymethylcarbonyl)piperidine and 3-methyl-1-(2-naphthyloxymethylcarbonyl)piperidine (Thamotharan, Parthasarathi, Malik et al., 2003a), 4-(2-naphthyloxymethylcarbonyl)morpholine and 4-methyl-1-(2-naphthyloxymethylcarbonyl)piperazine (Thamotharan, Parthasarathi, Gupta et al., 2003a), as well as N,N-dimethyl-2-(2-naphthyloxy)acetamide monohydrate (Thamotharan, Parthasarathi, Gupta et al., 2003c). In (I), the central fragment C2—O11—C12—C13—N14 is planar, with a maximum deviation of 0.0223 (13) Å for atom C12. This central unit is virtually coplanar with the plane of the naphthalene moiety, the angle between the planes being 1.48 (5)°. The C2—O11—C12—C13 and O11—C12—C13—N14 torsion angles show that the central unit has an antiperiplanar conformation.

The pyrrolidine ring in nootropics usually has a half-chair (C2, twist-envelope) conformation, (Thamotharan, Parthasarathi, Malik et al., 2003b and references therein). In (I), however, the pyrrolidine ring adopts an envelope conformation, with atom C17 as the flap, a pseudo-rotation angle Δ = 86.0 (1)° and a maximum torsion angle ϕm = 36.5 (1)° (Rao et al., 1981) for the atom sequence N14—C15—C16—C17—C18. Ignoring C17, the mean plane through the remainder of the pyrrolidine ring is almost coplanar with the plane of the naphthalene moiety, the angle between the planes being 3.55 (9)°. Thus, the entire molecule is essentially planar.

The exocyclic bond angle C1—C2—O11 deviates significantly from the normal value of 120° (Table 1) and this may be due to steric repulsion (H1···H121 =2.31 Å, H1···H122 = 2.28 Å). The crystal packing is influenced only by normal van der Waals contacts.

Experimental top

Methyl 2-(2-naphthyloxy)acetate (0.5 g) was reacted with pyrrolidine. The oily product obtained was treated with water. The precipitate obtained was filtered, dried and crystallized from acetone to afford (I) (yield, 0.51 g, 86.39%; m.p. 397–399 K).

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Reflection 1 0 0 was partially obscured by the beam stop and was omitted.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.
N-(2-naphthyloxymethylcarbonyl)pyrrolidine top
Crystal data top
C16H17NO2F(000) = 544
Mr = 255.31Dx = 1.343 Mg m3
Monoclinic, P21/cMelting point: 397 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.6427 (2) ÅCell parameters from 3899 reflections
b = 8.8035 (2) Åθ = 2.0–30.0°
c = 14.4306 (2) ŵ = 0.09 mm1
β = 110.9738 (11)°T = 160 K
V = 1262.46 (4) Å3Prism, colourless
Z = 40.23 × 0.20 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer
2775 reflections with I > 2σ(I)
Radiation source: Nonius FR591 sealed tube generatorRint = 0.047
Horizontally mounted graphite crystal monochromatorθmax = 30.0°, θmin = 2.8°
Detector resolution: 9 pixels mm-1h = 014
ϕ and ω scans with κ offsetsk = 012
33348 measured reflectionsl = 2018
3686 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.209P]
where P = (Fo2 + 2Fc2)/3
3685 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H17NO2V = 1262.46 (4) Å3
Mr = 255.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6427 (2) ŵ = 0.09 mm1
b = 8.8035 (2) ÅT = 160 K
c = 14.4306 (2) Å0.23 × 0.20 × 0.17 mm
β = 110.9738 (11)°
Data collection top
Nonius KappaCCD
diffractometer
2775 reflections with I > 2σ(I)
33348 measured reflectionsRint = 0.047
3686 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
3685 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Experimental. Solvent used: acetone Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.484 (2) Frames collected: 326 Seconds exposure per frame: 40 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 28.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.72111 (8)0.52679 (10)0.40282 (6)0.0258 (2)
O130.91728 (9)0.71575 (11)0.40863 (6)0.0329 (2)
N141.00984 (10)0.71437 (12)0.57646 (7)0.0250 (2)
C10.59653 (11)0.36322 (13)0.47607 (8)0.0225 (3)
H10.65610.38330.54180.027*
C20.61699 (11)0.43114 (13)0.39705 (8)0.0223 (2)
C30.52769 (12)0.40350 (14)0.29858 (8)0.0252 (3)
H30.54180.45280.24460.030*
C40.42181 (12)0.30663 (13)0.28106 (8)0.0247 (3)
H40.36330.28840.21480.030*
C50.28892 (12)0.13087 (14)0.34436 (9)0.0255 (3)
H50.22970.11060.27850.031*
C60.26823 (13)0.06134 (14)0.42287 (9)0.0272 (3)
H60.19540.00740.41120.033*
C70.35519 (13)0.09200 (14)0.52097 (9)0.0273 (3)
H70.34020.04390.57500.033*
C80.46083 (12)0.19043 (13)0.53880 (8)0.0248 (3)
H80.51800.21050.60520.030*
C90.48618 (11)0.26294 (13)0.45948 (8)0.0214 (2)
C100.39775 (11)0.23241 (13)0.36073 (8)0.0218 (2)
C120.81293 (12)0.56020 (14)0.49915 (8)0.0236 (3)
H1210.85740.46590.53230.028*
H1220.76480.60600.53960.028*
C130.91719 (12)0.67071 (14)0.48940 (8)0.0238 (3)
C151.01720 (12)0.66274 (15)0.67521 (9)0.0277 (3)
H1511.03300.55180.68280.033*
H1520.93350.68760.68700.033*
C161.13665 (16)0.75073 (18)0.74576 (11)0.0421 (4)
H1611.11980.78100.80640.051*
H1621.21970.68870.76520.051*
C171.14902 (18)0.88943 (19)0.68716 (11)0.0456 (4)
H1711.08680.97080.69090.055*
H1721.24210.92940.71200.055*
C181.11106 (12)0.83033 (15)0.58232 (9)0.0286 (3)
H1811.07290.91210.53320.034*
H1821.18980.78550.57120.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0235 (4)0.0310 (5)0.0208 (4)0.0041 (3)0.0054 (3)0.0001 (3)
O130.0333 (5)0.0406 (5)0.0250 (4)0.0040 (4)0.0106 (4)0.0043 (4)
N140.0218 (5)0.0271 (5)0.0245 (5)0.0022 (4)0.0063 (4)0.0008 (4)
C10.0209 (5)0.0261 (6)0.0189 (5)0.0036 (4)0.0051 (4)0.0006 (4)
C20.0209 (5)0.0235 (6)0.0226 (6)0.0017 (4)0.0081 (4)0.0007 (4)
C30.0281 (6)0.0281 (6)0.0196 (6)0.0004 (5)0.0087 (5)0.0008 (4)
C40.0266 (6)0.0273 (6)0.0176 (5)0.0012 (5)0.0047 (4)0.0009 (4)
C50.0237 (6)0.0285 (6)0.0229 (5)0.0005 (5)0.0068 (4)0.0042 (4)
C60.0271 (6)0.0279 (6)0.0287 (6)0.0025 (5)0.0126 (5)0.0032 (5)
C70.0317 (7)0.0291 (6)0.0242 (6)0.0019 (5)0.0135 (5)0.0012 (5)
C80.0266 (6)0.0280 (6)0.0196 (5)0.0027 (5)0.0079 (5)0.0001 (4)
C90.0214 (5)0.0230 (6)0.0202 (5)0.0050 (4)0.0080 (4)0.0002 (4)
C100.0227 (5)0.0234 (6)0.0196 (5)0.0037 (4)0.0078 (4)0.0012 (4)
C120.0216 (5)0.0273 (6)0.0205 (5)0.0003 (5)0.0061 (4)0.0007 (4)
C130.0210 (5)0.0254 (6)0.0251 (6)0.0031 (5)0.0083 (4)0.0013 (4)
C150.0257 (6)0.0323 (7)0.0230 (6)0.0008 (5)0.0061 (5)0.0021 (5)
C160.0444 (8)0.0446 (9)0.0286 (7)0.0122 (7)0.0023 (6)0.0005 (6)
C170.0513 (9)0.0408 (8)0.0407 (8)0.0156 (7)0.0117 (7)0.0075 (6)
C180.0232 (6)0.0262 (6)0.0355 (7)0.0021 (5)0.0095 (5)0.0006 (5)
Geometric parameters (Å, º) top
O11—C21.3703 (14)C7—C81.3690 (17)
O11—C121.4147 (14)C7—H70.9500
O13—C131.2315 (15)C8—C91.4182 (16)
N14—C131.3459 (15)C8—H80.9500
N14—C181.4643 (16)C9—C101.4243 (16)
N14—C151.4709 (15)C12—C131.5197 (17)
C1—C21.3723 (16)C12—H1210.9900
C1—C91.4194 (17)C12—H1220.9900
C1—H10.9500C15—C161.5252 (19)
C2—C31.4194 (16)C15—H1510.9900
C3—C41.3626 (17)C15—H1520.9900
C3—H30.9500C16—C171.518 (2)
C4—C101.4231 (16)C16—H1610.9900
C4—H40.9500C16—H1620.9900
C5—C61.3732 (18)C17—C181.512 (2)
C5—C101.4144 (17)C17—H1710.9900
C5—H50.9500C17—H1720.9900
C6—C71.4126 (17)C18—H1810.9900
C6—H60.9500C18—H1820.9900
C2—O11—C12116.52 (9)O11—C12—C13108.21 (9)
C13—N14—C18122.07 (10)O11—C12—H121110.1
C13—N14—C15125.67 (10)C13—C12—H121110.1
C18—N14—C15112.12 (9)O11—C12—H122110.1
C2—C1—C9119.91 (10)C13—C12—H122110.1
C2—C1—H1120.0H121—C12—H122108.4
C9—C1—H1120.0O13—C13—N14122.89 (11)
O11—C2—C1125.64 (10)O13—C13—C12122.80 (10)
O11—C2—C3113.79 (10)N14—C13—C12114.31 (10)
C1—C2—C3120.57 (11)N14—C15—C16103.44 (10)
C4—C3—C2120.40 (11)N14—C15—H151111.1
C4—C3—H3119.8C16—C15—H151111.1
C2—C3—H3119.8N14—C15—H152111.1
C3—C4—C10120.89 (10)C16—C15—H152111.1
C3—C4—H4119.6H151—C15—H152109.0
C10—C4—H4119.6C17—C16—C15104.74 (11)
C6—C5—C10120.50 (11)C17—C16—H161110.8
C6—C5—H5119.8C15—C16—H161110.8
C10—C5—H5119.8C17—C16—H162110.8
C5—C6—C7120.04 (11)C15—C16—H162110.8
C5—C6—H6120.0H161—C16—H162108.9
C7—C6—H6120.0C18—C17—C16103.61 (12)
C8—C7—C6120.58 (11)C18—C17—H171111.0
C8—C7—H7119.7C16—C17—H171111.0
C6—C7—H7119.7C18—C17—H172111.0
C7—C8—C9120.92 (10)C16—C17—H172111.0
C7—C8—H8119.5H171—C17—H172109.0
C9—C8—H8119.5N14—C18—C17103.02 (11)
C8—C9—C1121.92 (10)N14—C18—H181111.2
C8—C9—C10118.30 (11)C17—C18—H181111.2
C1—C9—C10119.78 (10)N14—C18—H182111.2
C5—C10—C4121.91 (10)C17—C18—H182111.2
C5—C10—C9119.65 (11)H181—C18—H182109.1
C4—C10—C9118.44 (11)
C12—O11—C2—C11.55 (17)C8—C9—C10—C50.53 (16)
C12—O11—C2—C3179.33 (10)C1—C9—C10—C5179.16 (10)
C9—C1—C2—O11178.29 (10)C8—C9—C10—C4179.13 (10)
C9—C1—C2—C30.77 (18)C1—C9—C10—C41.17 (16)
O11—C2—C3—C4177.85 (10)C2—O11—C12—C13178.34 (9)
C1—C2—C3—C41.31 (18)C18—N14—C13—O135.85 (19)
C2—C3—C4—C100.58 (18)C15—N14—C13—O13178.70 (11)
C10—C5—C6—C70.57 (18)C18—N14—C13—C12174.56 (10)
C5—C6—C7—C80.23 (19)C15—N14—C13—C120.90 (17)
C6—C7—C8—C90.50 (18)O11—C12—C13—O131.60 (16)
C7—C8—C9—C1178.81 (11)O11—C12—C13—N14178.81 (10)
C7—C8—C9—C100.88 (17)C13—N14—C15—C16178.27 (12)
C2—C1—C9—C8179.84 (11)C18—N14—C15—C162.43 (14)
C2—C1—C9—C100.47 (17)N14—C15—C16—C1723.52 (15)
C6—C5—C10—C4179.83 (11)C15—C16—C17—C1835.72 (16)
C6—C5—C10—C90.18 (17)C13—N14—C18—C17156.45 (12)
C3—C4—C10—C5179.69 (11)C15—N14—C18—C1719.56 (14)
C3—C4—C10—C90.65 (17)C16—C17—C18—N1433.41 (15)

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)160
a, b, c (Å)10.6427 (2), 8.8035 (2), 14.4306 (2)
β (°) 110.9738 (11)
V3)1262.46 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
33348, 3686, 2775
Rint0.047
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.144, 1.05
No. of reflections3685
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 and PLATON (Spek, 2003).

Selected bond and torsion angles (º) top
O11—C2—C1125.64 (10)
C2—O11—C12—C13178.34 (9)O11—C12—C13—N14178.81 (10)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds