Download citation
Download citation
link to html
The title compound, [Ge2Cl2(C4H6)(C12H27Si)2], is located on a twofold rotation axis. As a result of the crystal symmetry, the butenyl chain is disordered over two sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018415/cv6225sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018415/cv6225Isup2.hkl
Contains datablock I

CCDC reference: 209188

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.059
  • Data-to-parameter ratio = 28.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT301_ALERT_3_C Main Residue Disorder ....................... 6.00 Perc. PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) 1.11 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Since cyclotrigermanes can be conveniently transformed into germylenes and digermenes, we have become interested in the properties of cis,trans-cyclotrigermane, (tBu3SiGeCl)3. In this context, the photolysis of (tBu3SiGeCl)3 is of particular interest to us. Chlorosupersilylgermylene, tBu3SiGeCl, and trans-1,2-dichloro-1,2-disupersilyldigermene, tBu3SiGeClClGeSitBu3, were formed almost quantitatively by photolysis of cis,trans-cyclotrigermane (tBu3SiGeCl)3 in benzene. The reaction of chlorosupersilylgermylene, tBu3SiGeCl, and trans-1,2-dichloro-1,2-disupersilyldigermene, tBu3SiGeClClGeSitBu3, with 1,3-butadiene gave the [4 + 1] and the [4 + 2] cycloadducts. X-ray quality crystals of the [4 + 2] cycloadduct, the title compound, (II), were obtained from benzene.

Compound (II) is located on a twofold rotation axis running through the Ge—Ge bond. Unfortunately, this imposed symmetry leads to a disordered butenyl chain. Two different orientations of the central CC double bond can be found. The geometric parameters (Table 1) are comparable with those of trans-(µ2-2,3-dimethylbut-2-ene-1,4-diyl)-dichloro-disupersilyl-digermane (Ichinohe et al., 2000).

Experimental top

A mixture of 1.3-butadiene (0.5 mmol), (tBu3SiGeCl)3 (0.12 mmol), (I), and C6D6 (0.6 ml) was photolysed for one week in a sealed NMR tube. The NMR (1H, 13C and 29Si) spectra showed only the signals from (II) and (III), and thus indicated the formation of the cycloadducts (II) and (III) in quantitative yield. Cycloadducts (II) and (III) were separated by HPLC using hexane as eluent (stationary phase; Macherey-Nagel nucleosil 50 Å, 5 mm), and showed peaks with retention times of 17.18 min for (II) and 20.07 min for (III). X-ray quality crystals of (II) were grown from a benzene solution at ambient temperature. NMR data for (I), (II) and (III) are listed in Table 2.

Refinement top

The two central atoms of the butenyl chain are disorderd over two sites. Therefore, they were refined with site occupancy factors of 0.5. H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl)], using a riding model with methyl C—H = 0.98, methylene C—H = 0.99 and C(sp2)-H = 0.95 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of (II) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one of the two orientations of the butenyl chain is shown. H atoms have been omitted for clarity.
trans-µ-But-2-ene-1,4-diyl-dichlorobis(tri-tert- butylsilyl)digermanium(Ge–Ge) top
Crystal data top
[Ge2Cl2(C4H6)(C12H27Si)2]F(000) = 1416
Mr = 669.02Dx = 1.297 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25280 reflections
a = 25.236 (1) Åθ = 2.6–29.2°
b = 9.6427 (5) ŵ = 2.00 mm1
c = 14.0761 (6) ÅT = 173 K
V = 3425.3 (3) Å3Plate, colourless
Z = 40.17 × 0.14 × 0.08 mm
Data collection top
STOE IPDS II two-circle
diffractometer
4663 independent reflections
Radiation source: fine-focus sealed tube3368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 29.3°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
h = 3434
Tmin = 0.728, Tmax = 0.857k = 1313
47335 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.002
4663 reflectionsΔρmax = 0.60 e Å3
164 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00146 (12)
Crystal data top
[Ge2Cl2(C4H6)(C12H27Si)2]V = 3425.3 (3) Å3
Mr = 669.02Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 25.236 (1) ŵ = 2.00 mm1
b = 9.6427 (5) ÅT = 173 K
c = 14.0761 (6) Å0.17 × 0.14 × 0.08 mm
Data collection top
STOE IPDS II two-circle
diffractometer
4663 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
3368 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.857Rint = 0.061
47335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.87Δρmax = 0.60 e Å3
4663 reflectionsΔρmin = 0.50 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.452566 (7)0.836245 (18)0.224503 (13)0.02088 (5)
Cl10.455539 (19)0.78760 (5)0.07034 (3)0.03174 (10)
Si10.374802 (18)0.71071 (5)0.28568 (4)0.02235 (10)
C10.35588 (8)0.8074 (2)0.40201 (14)0.0325 (4)
C20.39647 (7)0.5207 (2)0.30612 (15)0.0309 (4)
C30.31920 (7)0.7270 (2)0.18986 (14)0.0281 (4)
C40.44353 (7)1.04284 (18)0.21985 (16)0.0310 (4)
H4A0.40591.06560.20760.037*
H4B0.46501.08150.16730.037*0.50
H4C0.44261.08020.28550.037*0.50
C110.31850 (9)0.7204 (3)0.46493 (17)0.0489 (6)
H11A0.28630.69810.42930.073*
H11B0.30910.77350.52190.073*
H11C0.33640.63440.48360.073*
C120.32852 (9)0.9478 (3)0.38246 (17)0.0411 (5)
H12A0.29620.93230.34530.062*
H12B0.35261.00800.34680.062*
H12C0.31940.99210.44290.062*
C130.40592 (9)0.8396 (3)0.46055 (15)0.0406 (5)
H13A0.42460.75310.47480.061*
H13B0.39580.88530.52000.061*
H13C0.42920.90100.42400.061*
C210.34875 (9)0.4227 (2)0.3222 (2)0.0470 (6)
H21A0.32470.42830.26760.071*
H21B0.32980.45050.37990.071*
H21C0.36150.32720.32920.071*
C220.43341 (9)0.5090 (2)0.39251 (17)0.0396 (5)
H22A0.46400.57030.38370.059*
H22B0.44570.41300.39890.059*
H22C0.41420.53620.45000.059*
C230.42755 (8)0.4677 (2)0.21879 (18)0.0369 (4)
H23A0.40510.47360.16220.055*
H23B0.43800.37100.22920.055*
H23C0.45930.52470.20970.055*
C310.32556 (8)0.6243 (2)0.10687 (16)0.0375 (5)
H31A0.32670.52940.13170.056*
H31B0.35860.64430.07280.056*
H31C0.29550.63390.06330.056*
C320.31770 (8)0.8730 (2)0.14596 (15)0.0342 (4)
H32A0.31370.94210.19650.051*
H32B0.28770.87970.10200.051*
H32C0.35080.89020.11140.051*
C330.26451 (7)0.6969 (2)0.23523 (16)0.0380 (5)
H33A0.26480.60420.26380.057*
H33B0.23700.70110.18620.057*
H33C0.25710.76620.28440.057*
C410.46020 (15)1.1038 (3)0.3088 (3)0.0278 (7)0.50
H410.43431.14330.34960.033*0.50
C420.51068 (15)1.1059 (4)0.3347 (3)0.0298 (8)0.50
H420.51891.15110.39280.036*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.02350 (8)0.01943 (8)0.01973 (8)0.00000 (7)0.00049 (8)0.00010 (7)
Cl10.0322 (2)0.0428 (2)0.0203 (2)0.0031 (2)0.00089 (17)0.00326 (17)
Si10.0217 (2)0.0245 (2)0.0209 (2)0.00079 (16)0.00232 (18)0.00053 (19)
C10.0299 (9)0.0465 (13)0.0212 (9)0.0085 (8)0.0026 (7)0.0015 (8)
C20.0291 (9)0.0239 (9)0.0399 (11)0.0027 (7)0.0051 (8)0.0085 (8)
C30.0243 (8)0.0332 (10)0.0270 (9)0.0002 (7)0.0015 (7)0.0020 (8)
C40.0351 (10)0.0201 (8)0.0376 (10)0.0030 (6)0.0018 (8)0.0026 (8)
C110.0405 (11)0.0757 (18)0.0305 (12)0.0067 (11)0.0138 (9)0.0069 (12)
C120.0409 (11)0.0488 (13)0.0338 (11)0.0145 (10)0.0005 (9)0.0139 (10)
C130.0404 (11)0.0566 (14)0.0249 (9)0.0105 (10)0.0028 (8)0.0105 (10)
C210.0396 (11)0.0319 (11)0.0695 (16)0.0099 (9)0.0043 (11)0.0124 (11)
C220.0371 (10)0.0365 (11)0.0451 (13)0.0041 (9)0.0020 (9)0.0146 (10)
C230.0354 (10)0.0246 (9)0.0508 (13)0.0020 (7)0.0055 (10)0.0026 (10)
C310.0323 (10)0.0450 (13)0.0353 (11)0.0045 (9)0.0032 (8)0.0094 (9)
C320.0338 (10)0.0383 (11)0.0303 (10)0.0043 (8)0.0079 (8)0.0029 (8)
C330.0240 (8)0.0510 (13)0.0389 (12)0.0032 (8)0.0003 (8)0.0011 (10)
C410.034 (2)0.0146 (14)0.0349 (19)0.0046 (13)0.0041 (14)0.0060 (13)
C420.037 (2)0.0186 (16)0.034 (2)0.0016 (14)0.0046 (17)0.0082 (15)
Geometric parameters (Å, º) top
Ge1—C42.0062 (18)C13—H13A0.9800
Ge1—Cl12.2214 (5)C13—H13B0.9800
Ge1—Si12.4613 (5)C13—H13C0.9800
Ge1—Ge1i2.4994 (4)C21—H21A0.9800
Si1—C21.934 (2)C21—H21B0.9800
Si1—C11.944 (2)C21—H21C0.9800
Si1—C31.9526 (19)C22—H22A0.9800
C1—C131.539 (3)C22—H22B0.9800
C1—C111.542 (3)C22—H22C0.9800
C1—C121.544 (3)C23—H23A0.9800
C2—C221.536 (3)C23—H23B0.9800
C2—C231.545 (3)C23—H23C0.9800
C2—C211.547 (3)C31—H31A0.9800
C3—C321.537 (3)C31—H31B0.9800
C3—C311.540 (3)C31—H31C0.9800
C3—C331.548 (3)C32—H32A0.9800
C4—C411.445 (4)C32—H32B0.9800
C4—C42i1.515 (4)C32—H32C0.9800
C4—H4A0.9898C33—H33A0.9800
C4—H4B0.9900C33—H33B0.9800
C4—H4C0.9921C33—H33C0.9800
C11—H11A0.9800C41—C421.325 (5)
C11—H11B0.9800C41—H4C0.5975
C11—H11C0.9800C41—H410.9500
C12—H12A0.9800C42—C4i1.515 (4)
C12—H12B0.9800C42—H420.9500
C12—H12C0.9800
C4—Ge1—Cl1100.46 (7)H12A—C12—H12C109.5
C4—Ge1—Si1114.15 (6)H12B—C12—H12C109.5
Cl1—Ge1—Si1105.358 (19)C1—C13—H13A109.5
C4—Ge1—Ge1i96.79 (5)C1—C13—H13B109.5
Cl1—Ge1—Ge1i104.371 (16)H13A—C13—H13B109.5
Si1—Ge1—Ge1i131.548 (15)C1—C13—H13C109.5
C2—Si1—C1113.49 (9)H13A—C13—H13C109.5
C2—Si1—C3112.48 (9)H13B—C13—H13C109.5
C1—Si1—C3111.51 (8)C2—C21—H21A109.5
C2—Si1—Ge1107.02 (6)C2—C21—H21B109.5
C1—Si1—Ge1104.75 (7)H21A—C21—H21B109.5
C3—Si1—Ge1106.96 (6)C2—C21—H21C109.5
C13—C1—C11107.71 (18)H21A—C21—H21C109.5
C13—C1—C12106.57 (18)H21B—C21—H21C109.5
C11—C1—C12107.80 (18)C2—C22—H22A109.5
C13—C1—Si1110.26 (13)C2—C22—H22B109.5
C11—C1—Si1111.91 (16)H22A—C22—H22B109.5
C12—C1—Si1112.34 (14)C2—C22—H22C109.5
C22—C2—C23107.30 (17)H22A—C22—H22C109.5
C22—C2—C21108.18 (18)H22B—C22—H22C109.5
C23—C2—C21108.02 (18)C2—C23—H23A109.5
C22—C2—Si1111.02 (15)C2—C23—H23B109.5
C23—C2—Si1109.79 (13)H23A—C23—H23B109.5
C21—C2—Si1112.35 (14)C2—C23—H23C109.5
C32—C3—C31106.64 (17)H23A—C23—H23C109.5
C32—C3—C33108.42 (16)H23B—C23—H23C109.5
C31—C3—C33106.56 (16)C3—C31—H31A109.5
C32—C3—Si1111.66 (13)C3—C31—H31B109.5
C31—C3—Si1113.40 (14)H31A—C31—H31B109.5
C33—C3—Si1109.91 (14)C3—C31—H31C109.5
C41—C4—C42i93.1 (2)H31A—C31—H31C109.5
C41—C4—Ge1110.02 (18)H31B—C31—H31C109.5
C42i—C4—Ge1109.18 (18)C3—C32—H32A109.5
C41—C4—H4A109.8C3—C32—H32B109.5
C42i—C4—H4A123.7H32A—C32—H32B109.5
Ge1—C4—H4A109.6C3—C32—H32C109.5
C41—C4—H4B109.6H32A—C32—H32C109.5
Ge1—C4—H4B109.7H32B—C32—H32C109.5
H4A—C4—H4B108.1C3—C33—H33A109.5
C42i—C4—H4C110.2C3—C33—H33B109.5
Ge1—C4—H4C109.4H33A—C33—H33B109.5
H4A—C4—H4C93.3C3—C33—H33C109.5
H4B—C4—H4C125.0H33A—C33—H33C109.5
C1—C11—H11A109.5H33B—C33—H33C109.5
C1—C11—H11B109.5C42—C41—C4121.7 (3)
H11A—C11—H11B109.5C42—C41—H4C150.8
C1—C11—H11C109.5C42—C41—H41119.2
H11A—C11—H11C109.5C4—C41—H41119.2
H11B—C11—H11C109.5H4C—C41—H4188.4
C1—C12—H12A109.5C41—C42—C4i126.0 (3)
C1—C12—H12B109.5C41—C42—H42117.0
H12A—C12—H12B109.5C4i—C42—H42117.0
C1—C12—H12C109.5
C4—Ge1—Si1—C2169.60 (10)Ge1—Si1—C2—C2346.49 (14)
Cl1—Ge1—Si1—C281.16 (7)C1—Si1—C2—C2178.24 (19)
Ge1i—Ge1—Si1—C244.81 (7)C3—Si1—C2—C2149.53 (19)
C4—Ge1—Si1—C148.83 (10)Ge1—Si1—C2—C21166.71 (15)
Cl1—Ge1—Si1—C1158.07 (6)C2—Si1—C3—C32157.43 (13)
Ge1i—Ge1—Si1—C175.96 (7)C1—Si1—C3—C3273.76 (16)
C4—Ge1—Si1—C369.64 (9)Ge1—Si1—C3—C3240.21 (14)
Cl1—Ge1—Si1—C339.60 (7)C2—Si1—C3—C3136.92 (17)
Ge1i—Ge1—Si1—C3165.57 (6)C1—Si1—C3—C31165.74 (14)
C2—Si1—C1—C1372.53 (18)Ge1—Si1—C3—C3180.29 (15)
C3—Si1—C1—C13159.20 (15)C2—Si1—C3—C3382.22 (15)
Ge1—Si1—C1—C1343.86 (16)C1—Si1—C3—C3346.60 (17)
C2—Si1—C1—C1147.33 (17)Ge1—Si1—C3—C33160.57 (13)
C3—Si1—C1—C1180.94 (16)Cl1—Ge1—C4—C41158.52 (19)
Ge1—Si1—C1—C11163.72 (14)Si1—Ge1—C4—C4189.27 (19)
C2—Si1—C1—C12168.76 (14)Ge1i—Ge1—C4—C4152.5 (2)
C3—Si1—C1—C1240.49 (18)Cl1—Ge1—C4—C42i57.73 (19)
Ge1—Si1—C1—C1274.85 (15)Si1—Ge1—C4—C42i169.94 (18)
C1—Si1—C2—C2243.05 (16)Ge1i—Ge1—C4—C42i48.30 (19)
C3—Si1—C2—C22170.82 (13)C42i—C4—C41—C4242.4 (3)
Ge1—Si1—C2—C2272.00 (14)Ge1—C4—C41—C4269.3 (4)
C1—Si1—C2—C23161.53 (13)C4—C41—C42—C4i2.6 (6)
C3—Si1—C2—C2370.69 (15)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ge2Cl2(C4H6)(C12H27Si)2]
Mr669.02
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)25.236 (1), 9.6427 (5), 14.0761 (6)
V3)3425.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.17 × 0.14 × 0.08
Data collection
DiffractometerSTOE IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 1990; Blessing, 1995)
Tmin, Tmax0.728, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
47335, 4663, 3368
Rint0.061
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 0.87
No. of reflections4663
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.50

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL-Plus (Sheldrick, 1991), SHELXL97.

Selected bond lengths (Å) top
Ge1—C42.0062 (18)Ge1—Ge1i2.4994 (4)
Ge1—Cl12.2214 (5)C4—C411.445 (4)
Ge1—Si12.4613 (5)C41—C421.325 (5)
Symmetry code: (i) x+1, y, z+1/2.
Selected NMR data for (I), (II), and (III) (δ in p.p.m.) top
1H NMR13C NMR29Si NMR
C6D6C6D6C6D6
(I)1.39 (s, 2SitBu3)25.6 (s, CMe3)46.5 (s, SitBu3)
1.40 (s, 2SitBu3)26.1 (s, 2CMe3)48.4 (s, 2SitBu3)
31.7 (s, CMe3)
31.9 (s, 2CMe3)
(II)1.31 (s, 2SitBu3)25.1 (s, CMe3)37.1 (s, 2SitBu3)
2.53 (s, 2CH2)31.5 (s, CMe3)
5.83 (m, 2 CH)27.8 (s, 2CH2)
125.3 (s, 2 CH)
(III)1.14 (s, SitBu3)23.9 (s, CMe3)19.2 (s, SitBu3)
2.07 (s, 2CH2)30.8 (s, CMe3)
6.02 (m, 2 CH)29.2 (s, 2CH2)
130.4 (s, 2 CH)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds