Download citation
Download citation
link to html
The title compound, [Co(C4H4O5)(C12H8N2)H2O]·1.5H2O, consists of the octahedral complex and lattice water. The asymmetric unit contains two mol­ecules of the complex, which form a hydrogen-bonded dimer. The overlapped arrangement and shorter separations of 3.532 (6) and 3.385 (12) Å between neighboring parallel phenanthroline rings suggest the existence of π–π-stacking interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018762/cv6227sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018762/cv6227Isup2.hkl
Contains datablock I

CCDC reference: 222828

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.109
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 5 H2 O
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Aromatic ππ stacking interactions are important for some biological systems (Deisenhofer & Michel, 1989). As part of our investigation of the ππ stacking in metal complexes (Chen et al., 2003), the title CoII complex, (I), was prepared.

CoII compound (I) is isomorphous with the NiII (Baggio et al., 2000) and ZnII analogues (Baggio et al., 1996). The asymmetric unit of (I) contains two molecules of the complex and three molecules of lattice water, as shown in Fig. 1. The two independent complex molecules display a similar octahedral coordination geometry (Table 1), formed by a phenanthroline (phen), a meridional oxydiacetate and a coordinated water molecule. The lattice water molecules are hydrogen bonded to the adjacent carboxyl groups (Table 2). Through the hydrogen bonding between carboxyl groups and coordinated water molecules, two independent complex molecules link to each other to form a dimer (Fig. 1). All lattice water molecules are ordered in the CoII compound, which agrees with the case in the isomorphous ZnII complex but differs from the disorder found in the isomorphous NiII complex.

The molecular packing in a unit cell is illustrated in Fig. 2. The crystal structure consists of the hydrophilic layers formed by carboxylate and water molecules and hydrophobic layers formed by phen ligands. The parallel disposition of phen ligands is observed in the crystal. Fig. 3 shows the overlapped arrangement of the neighboring parallel phen ligands. The separations of 3.532 (6) Å between N1-phen and N1iii-phen and 3.385 (12) Å between the N3-phen and N3iv-phen suggest the existence of aromatic ππ stacking between phen ligands.

Experimental top

An aqueous solution (10 ml) containing CoCl2·6H2O (0.24 g, 1 mmol) and 1,10-phenanthroline (0.18 g, 1 mmol) was mixed with another aqueous solution (10 ml) containing oxydiacetic acid hydrate (0.15 g, 1 mmol) and NaOH (0.08 g, 2 mmol) at room temperature. The mixture was refluxed for 3 h. Pink single crystals of the title compound were obtained from the filtrate after 2 weeks.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and were included in the structure-factor calculations with fixed coordinates and isotropic displacement parameters of 0.05 Å2. Other H atoms were placed in calculated positions, with C—H = 0.93 Å (phen) or 0.97 Å (oxydiacetate) and were included in the final cycles of refinement in riding model, with Uiso(H) = 1.2Ueq of the carrier atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. The molecular packing diagram, showing the hydrophilic and hydrophobic layered structure. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A diagram showing the ππ stacking between (a) N1-phen and N1iii-phen rings, and (b) N3-phen and N3iv-phen rings. [Symmetry codes: (iii) 1 − x, −y, 1 − z; (iv) −x, 1 − y, 1 − z.]
Aqua(oxydiacetato-κ3O,O',O'')(1,10-phenanthroline-κ2N,N')cobalt(II) sesquihydrate top
Crystal data top
[Co(C4H4O5)(C12H8N2)(H2O)]·1.5H2OF(000) = 1712
Mr = 416.25Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16878 reflections
a = 10.4722 (16) Åθ = 2.8–24.0°
b = 24.3161 (9) ŵ = 1.03 mm1
c = 13.6729 (14) ÅT = 293 K
β = 93.627 (1)°Prism, pink
V = 3474.7 (7) Å30.32 × 0.28 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
7932 independent reflections
Radiation source: fine-focus sealed tube4856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 27.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.715, Tmax = 0.810k = 3130
21949 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0452P)2]
where P = (Fo2 + 2Fc2)/3
7932 reflections(Δ/σ)max < 0.001
479 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C4H4O5)(C12H8N2)(H2O)]·1.5H2OV = 3474.7 (7) Å3
Mr = 416.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.4722 (16) ŵ = 1.03 mm1
b = 24.3161 (9) ÅT = 293 K
c = 13.6729 (14) Å0.32 × 0.28 × 0.20 mm
β = 93.627 (1)°
Data collection top
Bruker SMART CCD
diffractometer
7932 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1999)
4856 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.810Rint = 0.039
21949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 0.93Δρmax = 0.56 e Å3
7932 reflectionsΔρmin = 0.41 e Å3
479 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.58785 (4)0.143260 (16)0.36913 (3)0.02094 (11)
Co20.08557 (4)0.327209 (16)0.41085 (3)0.02106 (11)
O10.75293 (19)0.17717 (9)0.31909 (16)0.0271 (5)
O20.8326 (2)0.25005 (10)0.24125 (17)0.0383 (6)
O30.51880 (18)0.20297 (8)0.26480 (15)0.0254 (5)
O40.38940 (19)0.13530 (8)0.36382 (15)0.0246 (5)
O50.20252 (19)0.17526 (8)0.32204 (16)0.0283 (5)
O60.58910 (18)0.19811 (8)0.48538 (15)0.0259 (5)
O70.26493 (18)0.29270 (8)0.45717 (15)0.0250 (5)
O80.3625 (2)0.22534 (9)0.54600 (16)0.0317 (5)
O90.04392 (18)0.27111 (8)0.52297 (15)0.0231 (5)
O100.11070 (18)0.33693 (8)0.42756 (16)0.0249 (5)
O110.28572 (19)0.29401 (8)0.47351 (17)0.0310 (5)
O120.06856 (19)0.26874 (8)0.30175 (15)0.0251 (5)
O210.9841 (2)0.11833 (9)0.39238 (19)0.0413 (6)
O220.4912 (2)0.35695 (9)0.4367 (2)0.0454 (7)
O230.3031 (2)0.38823 (10)0.29378 (19)0.0529 (7)
N10.5858 (2)0.07779 (10)0.26708 (18)0.0228 (6)
N20.6447 (2)0.07672 (10)0.45939 (19)0.0223 (6)
N30.1406 (2)0.39531 (10)0.50039 (19)0.0241 (6)
N40.0775 (2)0.39248 (10)0.30795 (19)0.0229 (6)
C10.7430 (3)0.22134 (13)0.2693 (2)0.0266 (7)
C20.6091 (3)0.24379 (13)0.2418 (2)0.0282 (7)
H2A0.59460.27720.27820.034*
H2B0.60050.25230.17230.034*
C30.3908 (3)0.22014 (12)0.2758 (2)0.0240 (7)
H3A0.34870.22850.21230.029*
H3B0.38980.25290.31620.029*
C40.3219 (3)0.17305 (12)0.3245 (2)0.0220 (7)
C50.5546 (3)0.07950 (13)0.1721 (2)0.0291 (8)
H50.54060.11360.14250.035*
C60.5415 (3)0.03255 (13)0.1144 (2)0.0333 (8)
H60.51980.03550.04760.040*
C70.5608 (3)0.01806 (13)0.1564 (3)0.0321 (8)
H70.55160.04980.11860.039*
C80.5949 (3)0.02162 (13)0.2576 (2)0.0256 (7)
C90.6181 (3)0.07232 (13)0.3091 (3)0.0309 (8)
H90.61050.10540.27520.037*
C100.6510 (3)0.07274 (13)0.4064 (3)0.0294 (8)
H100.66550.10610.43830.035*
C110.6639 (3)0.02276 (12)0.4607 (2)0.0250 (7)
C120.6973 (3)0.02059 (13)0.5611 (2)0.0307 (8)
H120.71600.05280.59600.037*
C130.7026 (3)0.02930 (13)0.6080 (2)0.0299 (8)
H130.72450.03120.67490.036*
C140.6749 (3)0.07701 (13)0.5548 (2)0.0264 (7)
H140.67760.11050.58760.032*
C150.6400 (3)0.02722 (12)0.4124 (2)0.0212 (7)
C160.6060 (3)0.02787 (12)0.3095 (2)0.0218 (7)
C210.2662 (3)0.25117 (13)0.5139 (2)0.0229 (7)
C220.1393 (3)0.23028 (12)0.5472 (2)0.0246 (7)
H22A0.11660.19590.51460.030*
H22B0.14570.22390.61740.030*
C230.0860 (3)0.25229 (12)0.5168 (2)0.0238 (7)
H23A0.11350.24420.58170.029*
H23B0.09390.21910.47750.029*
C240.1677 (3)0.29821 (12)0.4693 (2)0.0227 (7)
C250.1743 (3)0.39558 (14)0.5961 (2)0.0304 (8)
H250.17610.36230.62980.037*
C260.2069 (3)0.44341 (14)0.6480 (3)0.0373 (9)
H260.23190.44170.71450.045*
C270.2018 (3)0.49302 (14)0.6001 (3)0.0357 (9)
H270.22240.52530.63400.043*
C280.1651 (3)0.49475 (13)0.4990 (3)0.0288 (8)
C290.1539 (3)0.54434 (13)0.4411 (3)0.0376 (9)
H290.17180.57810.47110.045*
C300.1181 (3)0.54294 (13)0.3443 (3)0.0370 (9)
H300.11100.57580.30950.044*
C310.0909 (3)0.49204 (13)0.2941 (3)0.0298 (8)
C320.0530 (3)0.48775 (14)0.1935 (3)0.0333 (8)
H320.04450.51920.15500.040*
C330.0288 (3)0.43736 (14)0.1533 (3)0.0320 (8)
H330.00460.43400.08690.038*
C340.0409 (3)0.39071 (13)0.2129 (2)0.0284 (7)
H340.02240.35660.18470.034*
C350.1009 (3)0.44300 (12)0.3480 (2)0.0233 (7)
C360.1369 (3)0.44426 (12)0.4519 (2)0.0246 (7)
H610.51640.21140.50230.050*
H620.63040.23120.48010.050*
H1210.11020.23590.30800.050*
H1220.01710.25800.28120.050*
H2110.91860.13650.35950.050*
H2121.06330.13390.37530.050*
H2210.42600.33210.45330.050*
H2220.55480.33340.44340.050*
H2310.24010.37070.32370.050*
H2320.36690.38370.33030.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0195 (2)0.0218 (2)0.0213 (2)0.00181 (17)0.00100 (17)0.00106 (18)
Co20.0193 (2)0.0212 (2)0.0226 (3)0.00098 (17)0.00085 (17)0.00008 (18)
O10.0197 (11)0.0344 (13)0.0271 (13)0.0007 (10)0.0007 (9)0.0007 (10)
O20.0254 (12)0.0597 (16)0.0294 (14)0.0163 (11)0.0011 (10)0.0039 (12)
O30.0204 (11)0.0247 (12)0.0309 (13)0.0010 (9)0.0002 (9)0.0042 (10)
O40.0208 (11)0.0234 (12)0.0294 (13)0.0004 (9)0.0001 (9)0.0030 (9)
O50.0176 (11)0.0289 (12)0.0380 (14)0.0007 (9)0.0006 (10)0.0016 (10)
O60.0216 (11)0.0238 (11)0.0327 (14)0.0014 (9)0.0055 (10)0.0067 (10)
O70.0197 (11)0.0298 (12)0.0255 (13)0.0006 (9)0.0006 (9)0.0013 (10)
O80.0246 (12)0.0458 (14)0.0244 (13)0.0093 (11)0.0011 (10)0.0004 (11)
O90.0169 (10)0.0243 (11)0.0282 (13)0.0003 (9)0.0018 (9)0.0034 (9)
O100.0207 (11)0.0232 (11)0.0309 (13)0.0012 (9)0.0019 (9)0.0023 (9)
O110.0169 (11)0.0306 (13)0.0455 (15)0.0012 (9)0.0013 (10)0.0008 (11)
O120.0233 (11)0.0235 (11)0.0278 (13)0.0016 (9)0.0032 (9)0.0029 (9)
O210.0307 (13)0.0336 (14)0.0593 (18)0.0010 (11)0.0016 (12)0.0028 (12)
O220.0296 (13)0.0292 (14)0.077 (2)0.0002 (11)0.0005 (13)0.0162 (13)
O230.0553 (18)0.0460 (16)0.0553 (19)0.0006 (14)0.0119 (14)0.0147 (14)
N10.0235 (14)0.0257 (14)0.0190 (15)0.0031 (11)0.0018 (11)0.0033 (11)
N20.0217 (13)0.0239 (14)0.0210 (15)0.0010 (11)0.0007 (11)0.0004 (11)
N30.0199 (13)0.0244 (14)0.0279 (16)0.0010 (11)0.0008 (11)0.0023 (12)
N40.0200 (13)0.0225 (14)0.0266 (16)0.0016 (11)0.0056 (11)0.0000 (11)
C10.0247 (17)0.039 (2)0.0164 (18)0.0061 (14)0.0009 (13)0.0073 (15)
C20.0253 (17)0.0357 (19)0.0232 (19)0.0082 (14)0.0004 (14)0.0070 (15)
C30.0214 (16)0.0259 (17)0.0240 (18)0.0042 (13)0.0026 (13)0.0030 (13)
C40.0226 (16)0.0235 (16)0.0196 (17)0.0018 (13)0.0017 (13)0.0072 (13)
C50.0330 (18)0.0273 (18)0.027 (2)0.0036 (15)0.0007 (15)0.0016 (14)
C60.039 (2)0.039 (2)0.0208 (19)0.0009 (16)0.0036 (15)0.0076 (15)
C70.0315 (19)0.0280 (18)0.037 (2)0.0037 (15)0.0019 (16)0.0134 (16)
C80.0210 (16)0.0281 (17)0.0276 (19)0.0009 (13)0.0012 (14)0.0049 (14)
C90.0295 (18)0.0204 (17)0.043 (2)0.0020 (14)0.0062 (16)0.0070 (15)
C100.0277 (18)0.0213 (17)0.039 (2)0.0002 (14)0.0004 (16)0.0029 (15)
C110.0215 (16)0.0225 (16)0.031 (2)0.0009 (13)0.0028 (14)0.0022 (14)
C120.0319 (19)0.0284 (18)0.031 (2)0.0025 (15)0.0036 (15)0.0093 (15)
C130.0331 (19)0.0324 (19)0.0234 (19)0.0022 (15)0.0050 (15)0.0068 (15)
C140.0264 (17)0.0267 (17)0.0257 (19)0.0027 (14)0.0019 (14)0.0011 (14)
C150.0182 (15)0.0235 (16)0.0219 (18)0.0003 (12)0.0019 (13)0.0000 (13)
C160.0163 (15)0.0221 (16)0.0270 (19)0.0000 (12)0.0022 (13)0.0031 (13)
C210.0224 (16)0.0277 (18)0.0185 (17)0.0008 (13)0.0010 (13)0.0069 (14)
C220.0237 (16)0.0266 (17)0.0234 (18)0.0055 (13)0.0000 (13)0.0016 (14)
C230.0175 (15)0.0279 (17)0.0262 (19)0.0020 (13)0.0020 (13)0.0030 (14)
C240.0219 (16)0.0253 (17)0.0206 (18)0.0006 (13)0.0001 (13)0.0052 (13)
C250.0280 (18)0.0344 (19)0.029 (2)0.0006 (15)0.0007 (15)0.0017 (15)
C260.035 (2)0.043 (2)0.034 (2)0.0011 (17)0.0031 (16)0.0111 (17)
C270.0276 (19)0.033 (2)0.047 (3)0.0035 (15)0.0021 (17)0.0173 (17)
C280.0197 (16)0.0259 (18)0.041 (2)0.0021 (13)0.0039 (15)0.0067 (15)
C290.0251 (19)0.0228 (18)0.066 (3)0.0030 (14)0.0116 (18)0.0061 (18)
C300.031 (2)0.0227 (18)0.058 (3)0.0022 (15)0.0074 (18)0.0043 (17)
C310.0221 (17)0.0229 (17)0.045 (2)0.0023 (13)0.0080 (16)0.0047 (15)
C320.0296 (19)0.033 (2)0.039 (2)0.0071 (15)0.0097 (16)0.0145 (17)
C330.0324 (19)0.036 (2)0.028 (2)0.0047 (15)0.0043 (15)0.0089 (16)
C340.0279 (18)0.0299 (18)0.028 (2)0.0019 (14)0.0038 (15)0.0006 (15)
C350.0183 (16)0.0234 (16)0.0289 (19)0.0008 (12)0.0060 (14)0.0002 (14)
C360.0167 (15)0.0241 (17)0.033 (2)0.0017 (13)0.0050 (14)0.0038 (14)
Geometric parameters (Å, º) top
Co1—O12.070 (2)C3—H3B0.97
Co1—O62.074 (2)C5—C61.389 (4)
Co1—O42.084 (2)C5—H50.93
Co1—N22.098 (2)C6—C71.368 (4)
Co1—N12.116 (2)C6—H60.93
Co1—O32.130 (2)C7—C81.409 (5)
Co2—O122.060 (2)C7—H70.93
Co2—O102.096 (2)C8—C161.398 (4)
Co2—O72.117 (2)C8—C91.433 (4)
Co2—N32.118 (2)C9—C101.352 (5)
Co2—O92.118 (2)C9—H90.93
Co2—N42.119 (2)C10—C111.427 (4)
O1—C11.272 (4)C10—H100.93
O2—C11.249 (3)C11—C121.396 (4)
O3—C21.420 (3)C11—C151.398 (4)
O3—C31.421 (3)C12—C131.371 (4)
O4—C41.259 (3)C12—H120.93
O5—C41.250 (3)C13—C141.390 (4)
O6—H610.872C13—H130.93
O6—H620.918C14—H140.93
O7—C211.272 (3)C15—C161.430 (4)
O8—C211.244 (3)C21—C221.519 (4)
O9—C221.432 (3)C22—H22A0.97
O9—C231.433 (3)C22—H22B0.97
O10—C241.269 (3)C23—C241.527 (4)
O11—C241.245 (3)C23—H23A0.97
O12—H1210.911C23—H23B0.97
O12—H1220.959C25—C261.394 (4)
O21—H2110.910C25—H250.93
O21—H2120.954C26—C271.372 (5)
O22—H2210.950C26—H260.93
O22—H2220.878C27—C281.411 (5)
O23—H2310.866C27—H270.93
O23—H2320.866C28—C361.409 (4)
N1—C51.320 (4)C28—C291.443 (5)
N1—C161.356 (4)C29—C301.353 (5)
N2—C141.322 (4)C29—H290.93
N2—C151.364 (4)C30—C311.435 (5)
N3—C251.334 (4)C30—H300.93
N3—C361.362 (4)C31—C351.403 (4)
N4—C341.332 (4)C31—C321.410 (5)
N4—C351.361 (4)C32—C331.360 (5)
C1—C21.530 (4)C32—H320.93
C2—H2A0.97C33—C341.398 (4)
C2—H2B0.97C33—H330.93
C3—C41.528 (4)C34—H340.93
C3—H3A0.97C35—C361.447 (4)
O1—Co1—O691.84 (8)C6—C7—C8119.3 (3)
O1—Co1—O4151.31 (9)C6—C7—H7120.4
O6—Co1—O492.54 (8)C8—C7—H7120.4
O1—Co1—N2106.84 (9)C16—C8—C7116.9 (3)
O6—Co1—N293.29 (9)C16—C8—C9119.0 (3)
O4—Co1—N2101.19 (9)C7—C8—C9124.1 (3)
O1—Co1—N193.18 (9)C10—C9—C8121.0 (3)
O6—Co1—N1171.22 (9)C10—C9—H9119.5
O4—Co1—N186.49 (9)C8—C9—H9119.5
N2—Co1—N178.37 (10)C9—C10—C11121.0 (3)
O1—Co1—O376.25 (8)C9—C10—H10119.5
O6—Co1—O393.46 (8)C11—C10—H10119.5
O4—Co1—O375.19 (8)C12—C11—C15117.3 (3)
N2—Co1—O3172.48 (9)C12—C11—C10123.6 (3)
N1—Co1—O394.73 (9)C15—C11—C10119.1 (3)
O12—Co2—O1096.68 (8)C13—C12—C11119.5 (3)
O12—Co2—O788.71 (8)C13—C12—H12120.2
O10—Co2—O7150.42 (8)C11—C12—H12120.2
O12—Co2—N3165.06 (9)C12—C13—C14119.5 (3)
O10—Co2—N394.69 (9)C12—C13—H13120.2
O7—Co2—N386.17 (9)C14—C13—H13120.2
O12—Co2—O993.86 (8)N2—C14—C13122.7 (3)
O10—Co2—O975.25 (8)N2—C14—H14118.6
O7—Co2—O975.38 (8)C13—C14—H14118.6
N3—Co2—O998.41 (9)N2—C15—C11123.0 (3)
O12—Co2—N492.19 (9)N2—C15—C16116.9 (3)
O10—Co2—N489.41 (8)C11—C15—C16120.0 (3)
O7—Co2—N4119.53 (9)N1—C16—C8123.2 (3)
N3—Co2—N478.24 (10)N1—C16—C15116.9 (3)
O9—Co2—N4164.06 (8)C8—C16—C15119.8 (3)
C1—O1—Co1118.15 (19)O8—C21—O7126.3 (3)
C2—O3—C3117.6 (2)O8—C21—C22115.4 (3)
C2—O3—Co1115.00 (17)O7—C21—C22118.2 (3)
C3—O3—Co1114.33 (16)O9—C22—C21108.0 (2)
C4—O4—Co1118.63 (18)O9—C22—H22A110.1
Co1—O6—H61118.58C21—C22—H22A110.1
Co1—O6—H62118.89O9—C22—H22B110.1
H61—O6—H6296.88C21—C22—H22B110.1
C21—O7—Co2118.13 (18)H22A—C22—H22B108.4
C22—O9—C23116.0 (2)O9—C23—C24107.2 (2)
C22—O9—Co2116.21 (16)O9—C23—H23A110.3
C23—O9—Co2113.65 (17)C24—C23—H23A110.3
C24—O10—Co2117.24 (18)O9—C23—H23B110.3
Co2—O12—H121121.19C24—C23—H23B110.3
Co2—O12—H122115.88H23A—C23—H23B108.5
H121—O12—H122102.84O11—C24—O10125.3 (3)
H211—O21—H212109.0O11—C24—C23116.9 (3)
H221—O22—H22296.4O10—C24—C23117.8 (3)
H231—O23—H232104.9N3—C25—C26123.0 (3)
C5—N1—C16118.1 (3)N3—C25—H25118.5
C5—N1—Co1128.1 (2)C26—C25—H25118.5
C16—N1—Co1113.4 (2)C27—C26—C25119.3 (3)
C14—N2—C15117.9 (3)C27—C26—H26120.3
C14—N2—Co1128.1 (2)C25—C26—H26120.3
C15—N2—Co1113.8 (2)C26—C27—C28119.6 (3)
C25—N3—C36118.1 (3)C26—C27—H27120.2
C25—N3—Co2128.1 (2)C28—C27—H27120.2
C36—N3—Co2113.8 (2)C36—C28—C27117.3 (3)
C34—N4—C35117.1 (3)C36—C28—C29118.0 (3)
C34—N4—Co2128.3 (2)C27—C28—C29124.7 (3)
C35—N4—Co2114.2 (2)C30—C29—C28121.6 (3)
O2—C1—O1126.8 (3)C30—C29—H29119.2
O2—C1—C2114.8 (3)C28—C29—H29119.2
O1—C1—C2118.4 (3)C29—C30—C31121.6 (3)
O3—C2—C1108.0 (2)C29—C30—H30119.2
O3—C2—H2A110.1C31—C30—H30119.2
C1—C2—H2A110.1C35—C31—C32117.2 (3)
O3—C2—H2B110.1C35—C31—C30118.4 (3)
C1—C2—H2B110.1C32—C31—C30124.4 (3)
H2A—C2—H2B108.4C33—C32—C31119.6 (3)
O3—C3—C4107.5 (2)C33—C32—H32120.2
O3—C3—H3A110.2C31—C32—H32120.2
C4—C3—H3A110.2C32—C33—C34119.2 (3)
O3—C3—H3B110.2C32—C33—H33120.4
C4—C3—H3B110.2C34—C33—H33120.4
H3A—C3—H3B108.5N4—C34—C33123.5 (3)
O5—C4—O4125.2 (3)N4—C34—H34118.2
O5—C4—C3117.1 (3)C33—C34—H34118.2
O4—C4—C3117.7 (3)N4—C35—C31123.4 (3)
N1—C5—C6122.8 (3)N4—C35—C36116.3 (3)
N1—C5—H5118.6C31—C35—C36120.3 (3)
C6—C5—H5118.6N3—C36—C28122.7 (3)
C7—C6—C5119.6 (3)N3—C36—C35117.2 (3)
C7—C6—H6120.2C28—C36—C35120.1 (3)
C5—C6—H6120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O80.871.792.647 (3)169
O6—H62···O11i0.921.772.685 (3)178
O12—H121···O50.911.772.676 (3)175
O12—H122···O2ii0.961.642.596 (3)171
O21—H211···O10.912.042.933 (3)166
O21—H212···O5i0.951.952.890 (3)168
O22—H221···O70.951.942.867 (3)163
O22—H222···O11i0.881.952.811 (3)168
O23—H231···O100.872.072.915 (3)165
O23—H232···O22ii0.872.243.094 (3)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C4H4O5)(C12H8N2)(H2O)]·1.5H2O
Mr416.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4722 (16), 24.3161 (9), 13.6729 (14)
β (°) 93.627 (1)
V3)3474.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.32 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 1999)
Tmin, Tmax0.715, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
21949, 7932, 4856
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 0.93
No. of reflections7932
No. of parameters479
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.41

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O12.070 (2)Co2—O122.060 (2)
Co1—O62.074 (2)Co2—O102.096 (2)
Co1—O42.084 (2)Co2—O72.117 (2)
Co1—N22.098 (2)Co2—N32.118 (2)
Co1—N12.116 (2)Co2—O92.118 (2)
Co1—O32.130 (2)Co2—N42.119 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H61···O80.871.792.647 (3)169
O6—H62···O11i0.921.772.685 (3)178
O12—H121···O50.911.772.676 (3)175
O12—H122···O2ii0.961.642.596 (3)171
O21—H211···O10.912.042.933 (3)166
O21—H212···O5i0.951.952.890 (3)168
O22—H221···O70.951.942.867 (3)163
O22—H222···O11i0.881.952.811 (3)168
O23—H231···O100.872.072.915 (3)165
O23—H232···O22ii0.872.243.094 (3)168
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds