Download citation
Download citation
link to html
The title mol­ecule, C17H16F2N2O4S2, contains a di­aza­cyclo­hexane ring with fluoro­benzene­sulfon­amide groups, and an exocyclic double bond. This poly­amine ring was synthesized to be a precursor for novel energetic analogs of 1,3,5-tri­nitro­tri­aza­cyclo­hexane (RDX), from a complex condensation reaction. The structure contains several weak intermolecular and intramolecular C—H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017021/ob6275sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017021/ob6275Isup2.hkl
Contains datablock I

CCDC reference: 222857

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.124
  • Data-to-parameter ratio = 10.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 67.11 From the CIF: _reflns_number_total 3177 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3369 Completeness (_total/calc) 94.30% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Polyamine rings, or ring systems, are necessary precursors for several of the most potent energetic materials known, such as RDX, HMX, and CL20. The C—N bonds holding these molecules together are weaker than C—C bonds, and thus release more energy when they are dissociated and recombined to form gaseous products, such as N2 and CO2. The backbone rings in these molecules are first synthesized with no energetic substituents, often through fairly simple condensation reactions between amines and a reactive carbonyl compound (e.g. glyoxal or formaldehyde). However, (I) results from a more complex condensation wherein the two N atoms seen in the central ring of the product (I) are already linked together in reactant (a). This reaction produces a diazacyclohexane ring with the amino N atoms already protected or stabilized by fluorobenzenesulfonamide groups, and an exocyclic double bond. This particular `designed' product, (I), was targeted as a precursor for further synthetic addition of energetic groups to produce novel analogs of 1,3,5-trinitrotriazacyclohexane (RDX).

The structure of the molecule of (I) and its packing are not unusual in any way (Figs. 1 and 2). There are five short intramolecular C—H···O contacts (Table 1) but they are not very short and are quite bent, so they may not be even weak `hydrogen bonds' but just unavoidable contacts caused by substitution of two bulky groups on each sulfonyl group. The remaining two C—H···O intermolecular bonds shown in Table 1 are close to linear [C—H···O angles of 163 (2) and 173 (2)°], and so appear to be hydrogen bonds, but weak ones, since their H···O contact distances [2.53 (3) and 2.54 (3) Å] are very slightly less than the expected van der Waals H···O contact of 2.62 Å (Rowland & Taylor, 1996).

Experimental top

Potassium carbonate (0.1 g, 0.27 mmol) and methallyl dichloride (0.038 g, 0.30 mmol) were added to a solution of methylene bis(4-fluorobenzenesulfonamide) (0.1 g, 0.27 mmol) in acetonitrile. The reaction mixture was heated at reflux overnight and then the resulting mixture was cooled to room temperature, filtered and concentrated to obtain a crystalline residue, which was recrystallized from a mixture of absolute ethanol and dried to obtain (1) as colorless crystals with a melting point of 457–458 K.

Refinement top

All of the H atoms were refined freely. The C—H bond distances are 0.86 (4)–1.03 (3) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I) with 25% atomic displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of (I), viewed down a direction perpendicular to the (001) plane. Only half of the contents of the cell (from z = 0 to z = 1/2) are shown, for clarity. The other half of the cell is related to that shown above by the inversion center at (1/2, 1/2, 1/2). Short C—H···O contacts [H···O distance = 2.53 (3) Å and C—H···O angle = 173 (2)°] link the screw-axis-related molecules along b, the vertical axis.
1,3-Bis(4-fluorobenzenesulfonyl)-5-methylene-1,2,3,4,5,6-hexahydropyrimidine top
Crystal data top
C17H16F2N2O4S2F(000) = 856
Mr = 414.44Dx = 1.455 Mg m3
Monoclinic, P21/nMelting point = 457–458 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 13.8591 (2) ÅCell parameters from 7044 reflections
b = 10.8218 (1) Åθ = 3.8–67.0°
c = 13.8946 (2) ŵ = 2.97 mm1
β = 114.751 (1)°T = 294 K
V = 1892.48 (5) Å3Plate, colorless
Z = 40.18 × 0.16 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3177 independent reflections
Radiation source: fine-focus sealed tube2783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 67.1°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1516
Tmin = 0.686, Tmax = 0.862k = 1112
9044 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.1403P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3177 reflectionsΔρmax = 0.24 e Å3
309 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (7)
Crystal data top
C17H16F2N2O4S2V = 1892.48 (5) Å3
Mr = 414.44Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.8591 (2) ŵ = 2.97 mm1
b = 10.8218 (1) ÅT = 294 K
c = 13.8946 (2) Å0.18 × 0.16 × 0.05 mm
β = 114.751 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2783 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.862Rint = 0.032
9044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 1.07Δρmax = 0.24 e Å3
3177 reflectionsΔρmin = 0.35 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38019 (4)0.57707 (4)0.10099 (4)0.0575 (2)
S20.66270 (4)0.83976 (5)0.14058 (4)0.0642 (2)
O1B0.38055 (12)0.56931 (15)0.00144 (12)0.0697 (4)
N10.50458 (13)0.56938 (15)0.18668 (13)0.0564 (4)
O2B0.59433 (12)0.83484 (16)0.02996 (12)0.0767 (5)
O1A0.32549 (13)0.48619 (14)0.13395 (13)0.0748 (4)
N30.60807 (13)0.75132 (15)0.19882 (13)0.0575 (4)
C150.2208 (2)0.8453 (3)0.1708 (2)0.0831 (7)
C140.2440 (2)0.9444 (2)0.1244 (2)0.0783 (7)
C20.58612 (16)0.62316 (19)0.15980 (18)0.0576 (5)
O2A0.68482 (14)0.95557 (16)0.19455 (15)0.0869 (5)
C60.5301 (2)0.5748 (2)0.30056 (19)0.0691 (6)
C110.32773 (15)0.72206 (19)0.11110 (15)0.0555 (5)
F140.20086 (17)1.05554 (16)0.12776 (15)0.1136 (6)
F241.05857 (14)0.5984 (2)0.1956 (2)0.1407 (9)
C210.78362 (16)0.7691 (2)0.15712 (17)0.0633 (5)
C120.35262 (17)0.8246 (2)0.06658 (17)0.0612 (5)
C160.26276 (19)0.7321 (3)0.1640 (2)0.0709 (6)
C220.7887 (2)0.7031 (3)0.0756 (2)0.0753 (6)
C130.3096 (2)0.9379 (2)0.07304 (19)0.0726 (6)
C260.87125 (19)0.7789 (3)0.2547 (2)0.0773 (7)
C50.56452 (18)0.7019 (2)0.34479 (16)0.0702 (6)
C40.6470 (2)0.7585 (3)0.31561 (18)0.0744 (6)
C250.9646 (2)0.7199 (3)0.2675 (3)0.0917 (9)
C230.8814 (2)0.6455 (3)0.0879 (3)0.0934 (8)
C240.9669 (2)0.6562 (3)0.1841 (3)0.0946 (9)
C5A0.5268 (3)0.7570 (4)0.4059 (3)0.1002 (10)
H4A0.713 (2)0.710 (3)0.348 (2)0.087 (8)*
H120.397 (2)0.819 (2)0.0300 (19)0.076 (7)*
H2A0.5646 (16)0.622 (2)0.0857 (18)0.058 (6)*
H4B0.662 (2)0.847 (3)0.342 (2)0.098 (9)*
H6A0.593 (2)0.516 (3)0.339 (2)0.092 (8)*
H160.248 (2)0.664 (3)0.194 (2)0.082 (8)*
H220.733 (2)0.699 (2)0.013 (2)0.078 (7)*
H6B0.468 (2)0.551 (3)0.304 (2)0.081 (8)*
H2B0.648 (2)0.574 (2)0.194 (2)0.077 (7)*
H5A0.476 (3)0.729 (3)0.420 (3)0.116 (12)*
H251.024 (3)0.726 (3)0.327 (3)0.104 (10)*
H5B0.551 (2)0.839 (3)0.428 (2)0.092 (9)*
H130.324 (2)1.006 (3)0.049 (2)0.083 (8)*
H260.865 (2)0.826 (3)0.312 (2)0.087 (8)*
H230.888 (3)0.593 (4)0.033 (3)0.128 (13)*
H150.177 (3)0.858 (3)0.211 (2)0.104 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0571 (3)0.0574 (3)0.0572 (3)0.00605 (19)0.0233 (2)0.00788 (19)
S20.0603 (3)0.0622 (3)0.0608 (4)0.0069 (2)0.0163 (2)0.0040 (2)
O1B0.0724 (9)0.0808 (10)0.0540 (9)0.0029 (7)0.0245 (7)0.0171 (7)
N10.0596 (9)0.0554 (9)0.0539 (10)0.0002 (7)0.0237 (8)0.0002 (6)
O2B0.0659 (9)0.0918 (12)0.0600 (10)0.0024 (8)0.0143 (7)0.0185 (7)
O1A0.0756 (9)0.0660 (9)0.0859 (11)0.0168 (7)0.0370 (8)0.0069 (7)
N30.0579 (9)0.0605 (10)0.0486 (9)0.0056 (7)0.0167 (7)0.0054 (7)
C150.0921 (17)0.0924 (18)0.0793 (18)0.0216 (13)0.0503 (14)0.0053 (13)
C140.0887 (16)0.0752 (15)0.0704 (15)0.0203 (13)0.0326 (12)0.0036 (11)
C20.0564 (11)0.0580 (11)0.0587 (13)0.0015 (9)0.0244 (9)0.0021 (9)
O2A0.0881 (11)0.0622 (10)0.1022 (14)0.0114 (8)0.0316 (10)0.0060 (8)
C60.0734 (14)0.0752 (14)0.0568 (13)0.0012 (11)0.0255 (11)0.0095 (10)
C110.0531 (10)0.0634 (11)0.0474 (10)0.0017 (8)0.0183 (8)0.0011 (8)
F140.1472 (16)0.0877 (11)0.1173 (13)0.0434 (10)0.0665 (12)0.0034 (9)
F240.0777 (11)0.162 (2)0.185 (2)0.0313 (12)0.0582 (12)0.0364 (16)
C210.0563 (11)0.0649 (12)0.0624 (13)0.0136 (9)0.0187 (9)0.0031 (9)
C120.0585 (11)0.0707 (13)0.0541 (12)0.0015 (9)0.0234 (9)0.0000 (9)
C160.0751 (14)0.0802 (15)0.0675 (14)0.0080 (11)0.0398 (11)0.0079 (11)
C220.0636 (13)0.0877 (17)0.0702 (16)0.0085 (12)0.0237 (12)0.0008 (12)
C130.0814 (15)0.0664 (14)0.0654 (14)0.0034 (11)0.0263 (12)0.0054 (10)
C260.0651 (13)0.0838 (16)0.0676 (15)0.0141 (11)0.0128 (11)0.0031 (12)
C50.0717 (13)0.0864 (15)0.0456 (12)0.0044 (11)0.0176 (10)0.0026 (10)
C40.0726 (14)0.0898 (17)0.0499 (13)0.0127 (12)0.0150 (10)0.0083 (11)
C250.0593 (14)0.107 (2)0.087 (2)0.0087 (14)0.0090 (13)0.0186 (16)
C230.0815 (18)0.106 (2)0.100 (2)0.0009 (15)0.0451 (16)0.0015 (17)
C240.0600 (14)0.105 (2)0.120 (3)0.0056 (13)0.0396 (15)0.0253 (18)
C5A0.112 (2)0.115 (3)0.084 (2)0.018 (2)0.0510 (18)0.0276 (17)
Geometric parameters (Å, º) top
S1—O1B1.4277 (16)C11—C161.385 (3)
S1—O1A1.4292 (16)F24—C241.365 (3)
S1—N11.6364 (17)C21—C221.366 (4)
S1—C111.760 (2)C21—C261.395 (3)
S2—O2A1.4264 (18)C12—C131.383 (3)
S2—O2B1.4296 (16)C12—H120.95 (3)
S2—N31.6300 (18)C16—H160.91 (3)
S2—C211.767 (2)C22—C231.373 (4)
N1—C21.452 (3)C22—H220.89 (3)
N1—C61.471 (3)C13—H130.87 (3)
N3—C21.474 (3)C26—C251.386 (4)
N3—C41.482 (3)C26—H260.98 (3)
C15—C141.358 (4)C5—C5A1.312 (4)
C15—C161.376 (4)C5—C41.495 (3)
C15—H151.00 (3)C4—H4A0.98 (3)
C14—F141.353 (3)C4—H4B1.02 (3)
C14—C131.372 (4)C25—C241.360 (5)
C2—H2A0.95 (2)C25—H250.89 (3)
C2—H2B0.95 (3)C23—C241.369 (5)
C6—C51.500 (3)C23—H230.99 (4)
C6—H6A1.03 (3)C5A—H5A0.86 (4)
C6—H6B0.92 (3)C5A—H5B0.95 (3)
C11—C121.383 (3)
O1B—S1—O1A120.18 (10)C22—C21—C26121.3 (2)
O1B—S1—N1106.27 (9)C22—C21—S2119.56 (18)
O1A—S1—N1105.69 (9)C26—C21—S2119.1 (2)
O1B—S1—C11107.82 (10)C13—C12—C11119.2 (2)
O1A—S1—C11107.20 (10)C13—C12—H12119.3 (16)
N1—S1—C11109.38 (8)C11—C12—H12121.5 (16)
O2A—S2—O2B119.85 (11)C15—C16—C11119.6 (2)
O2A—S2—N3107.29 (11)C15—C16—H16120.5 (17)
O2B—S2—N3105.99 (9)C11—C16—H16119.9 (17)
O2A—S2—C21109.16 (10)C21—C22—C23120.3 (3)
O2B—S2—C21106.82 (11)C21—C22—H22120.8 (17)
N3—S2—C21107.09 (9)C23—C22—H22118.9 (17)
C2—N1—C6113.48 (17)C14—C13—C12118.5 (2)
C2—N1—S1119.26 (14)C14—C13—H13118.1 (19)
C6—N1—S1119.07 (15)C12—C13—H13123.4 (19)
C2—N3—C4112.12 (18)C25—C26—C21118.4 (3)
C2—N3—S2115.92 (14)C25—C26—H26122.5 (17)
C4—N3—S2118.75 (14)C21—C26—H26119.1 (17)
C14—C15—C16118.7 (2)C5A—C5—C4123.1 (3)
C14—C15—H15118.7 (19)C5A—C5—C6122.5 (3)
C16—C15—H15122.6 (19)C4—C5—C6114.4 (2)
F14—C14—C15119.3 (2)N3—C4—C5107.86 (18)
F14—C14—C13117.5 (3)N3—C4—H4A108.4 (17)
C15—C14—C13123.2 (2)C5—C4—H4A109.1 (16)
N1—C2—N3110.22 (16)N3—C4—H4B111.5 (16)
N1—C2—H2A110.6 (13)C5—C4—H4B111.1 (17)
N3—C2—H2A109.4 (14)H4A—C4—H4B109 (2)
N1—C2—H2B106.9 (15)C24—C25—C26118.5 (3)
N3—C2—H2B109.7 (15)C24—C25—H25119 (2)
H2A—C2—H2B110 (2)C26—C25—H25122 (2)
N1—C6—C5111.67 (18)C24—C23—C22117.8 (3)
N1—C6—H6A107.4 (15)C24—C23—H23119 (2)
C5—C6—H6A107.2 (16)C22—C23—H23123 (2)
N1—C6—H6B104.1 (16)C25—C24—F24119.0 (3)
C5—C6—H6B112.0 (17)C25—C24—C23123.7 (3)
H6A—C6—H6B114 (2)F24—C24—C23117.3 (4)
C12—C11—C16120.9 (2)C5—C5A—H5A125 (2)
C12—C11—S1119.42 (15)C5—C5A—H5B116.5 (19)
C16—C11—S1119.63 (18)H5A—C5A—H5B118 (3)
O1B—S1—N1—C233.61 (17)N3—S2—C21—C22100.78 (19)
O1A—S1—N1—C2162.35 (15)O2A—S2—C21—C2638.6 (2)
C11—S1—N1—C282.54 (16)O2B—S2—C21—C26169.55 (17)
O1B—S1—N1—C6179.89 (15)N3—S2—C21—C2677.25 (19)
O1A—S1—N1—C651.15 (17)C16—C11—C12—C131.6 (3)
C11—S1—N1—C663.96 (17)S1—C11—C12—C13178.80 (17)
O2A—S2—N3—C2175.59 (14)C14—C15—C16—C110.4 (4)
O2B—S2—N3—C255.26 (16)C12—C11—C16—C151.2 (4)
C21—S2—N3—C258.51 (16)S1—C11—C16—C15179.2 (2)
O2A—S2—N3—C437.5 (2)C26—C21—C22—C230.6 (4)
O2B—S2—N3—C4166.65 (18)S2—C21—C22—C23178.6 (2)
C21—S2—N3—C479.59 (19)F14—C14—C13—C12178.6 (2)
C16—C15—C14—F14178.1 (2)C15—C14—C13—C121.2 (4)
C16—C15—C14—C131.6 (5)C11—C12—C13—C140.5 (3)
C6—N1—C2—N355.2 (2)C22—C21—C26—C250.0 (4)
S1—N1—C2—N393.03 (18)S2—C21—C26—C25178.0 (2)
C4—N3—C2—N160.7 (2)N1—C6—C5—C5A133.0 (3)
S2—N3—C2—N1158.48 (14)N1—C6—C5—C448.4 (3)
C2—N1—C6—C549.1 (3)C2—N3—C4—C558.2 (3)
S1—N1—C6—C599.2 (2)S2—N3—C4—C5162.25 (17)
O1B—S1—C11—C1237.86 (19)C5A—C5—C4—N3129.2 (3)
O1A—S1—C11—C12168.57 (16)C6—C5—C4—N352.2 (3)
N1—S1—C11—C1277.29 (18)C21—C26—C25—C240.7 (4)
O1B—S1—C11—C16142.56 (17)C21—C22—C23—C240.4 (4)
O1A—S1—C11—C1611.9 (2)C26—C25—C24—F24179.5 (2)
N1—S1—C11—C16102.29 (18)C26—C25—C24—C230.9 (5)
O2A—S2—C21—C22143.37 (19)C22—C23—C24—C250.3 (5)
O2B—S2—C21—C2212.4 (2)C22—C23—C24—F24179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1B0.95 (2)2.39 (2)2.852 (3)109 (2)
C22—H22···O2B0.89 (3)2.51 (3)2.873 (3)105 (1)
C16—H16···O1A0.91 (3)2.51 (3)2.884 (3)105 (2)
C4—H4B···O2A1.02 (3)2.49 (3)2.897 (3)103 (2)
C2—H2A···O2B0.95 (2)2.52 (2)2.947 (3)108 (2)
C13—H13···O2Bi0.87 (3)2.54 (3)3.386 (3)163 (2)
C2—H2B···O2Aii0.95 (3)2.53 (3)3.476 (3)173 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H16F2N2O4S2
Mr414.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.8591 (2), 10.8218 (1), 13.8946 (2)
β (°) 114.751 (1)
V3)1892.48 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.97
Crystal size (mm)0.18 × 0.16 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.686, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
9044, 3177, 2783
Rint0.032
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.07
No. of reflections3177
No. of parameters309
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1B0.95 (2)2.39 (2)2.852 (3)109 (2)
C22—H22···O2B0.89 (3)2.51 (3)2.873 (3)105 (1)
C16—H16···O1A0.91 (3)2.51 (3)2.884 (3)105 (2)
C4—H4B···O2A1.02 (3)2.49 (3)2.897 (3)103 (2)
C2—H2A···O2B0.95 (2)2.52 (2)2.947 (3)108 (2)
C13—H13···O2Bi0.87 (3)2.54 (3)3.386 (3)163 (2)
C2—H2B···O2Aii0.95 (3)2.53 (3)3.476 (3)173 (2)
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds