Download citation
Download citation
link to html
The title compound, C22H17NO3, is one of the photoreaction products of N-methyl-1,8-naphthalene­dicarbox­imide with 4-methoxy­phenyl­acetyl­ene. The planar cyclo­butene ring makes a dihedral angle of 70.36 (8)° with the benzene ring of the tetralin moiety. The substituted phenyl ring is twisted by 21.15 (14)° with respect to the attached cyclo­butene ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016611/ob6282sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016611/ob6282Isup2.hkl
Contains datablock I

CCDC reference: 222843

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.101
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The photochemistry of imides with alkenes has been extensively studied (Kanaoka, 1978; Mazzocchi, 1981). As part of our studies on the photoinduced electron-transfer reactions of aromatic imides with various organic electron donors (Xue et al., 2000), we have investigated the photoinduced reactions of naphthalimides with alkynes. We report here the X-ray crystal structure of the title compound, (I), which is one of the products of the photoreaction of N-methyl-1,8-naphthalenedicarboximide with 4-methoxyphenylacetylene.

The bond lengths and angles in (I) show normal values, except for the geometry of the cyclobutene ring (Fig. 1 and Table 1). The C7—C10 bond is elongated by the steric effect of the bulky substituents attached at atoms C7 and C10. This C7—C10 bond distance of 1.563 (2) Å is slightly longer than that of 4-methyl-2-phenylbenzo[de]cyclobut[i]isoquinoline-3,5(2H)-dione (Liu, Shi et al., 2003), but is much like that of 9,10-epoxy-4-methyl-2-phenylbenzo[de]cyclobut[i]isoquinoline-3,5(2H)-dione (Liu, Li et al., 2003). Such an elongation has also been found in another cyclobutene derivative (Usman et al., 2001).

The naphthalimide moiety has lost the coplanarity due to the sp3 character of atoms C9 and C10. The C7–C10 planar cyclobutene ring makes dihedral angles of 68.86 (8), 70.36 (8) and 83.03 (7)°, with the mean planes of the C9–C14 cyclohexadiene ring, the C11—C12/C15—C18 benzene ring and the C10–C11/C18–C20/N ring, respectively. The C9–C14 cyclohexadiene ring forms dihedral angles of 7.84 (11) and 17.50 (9)°, respectively, with the C11—C12/C15—C18 benzene ring and the C10—C11/C18—C20/N ring, while these two rings have a dihedral angle of 12.88 (10)°. The C1–C6 phenyl ring is twisted by 21.15 (14)° with respect to the cyclobutene ring.

In the crystal packing of (I) (Fig. 2), the molecules are arranged along the b axis into parallel infinite stripes in which the molecules orientate head-to-head and the two neighbouring tetrahydronaphthalene moieties lie back-to-back and the other two phenyl rings overlap face-to-face. Such arrangements take advantage of the ππ-stacking interactions involving these aromatic rings, which stabilize the crystal packing.

Experimental top

The title compound was prepared via irradiation (with light of wavelength longer than 300 nm) of a benzene solution of N-methyl-1,8-naphthalenedicarboximide with 4-methoxyphenylacetylene, and isolated as one of the products of the photoreaction by flash column chromatography on silica gel (m.p. 441–442 K). Single crystals of (I) suitable for X-ray diffractionwere grown from an ethanol–ethyl acetate solution.

Refinement top

The positions of all H atoms were fixed geometrically and distances to H atoms were set by the program.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing diagram of (I), viewed down the b axis.
2-(4-Methoxyphenyl)-4-methylbenzo[de]cyclobut[i]isoquinoline-3,5(2H)-dione top
Crystal data top
C22H17NO3F(000) = 720
Mr = 343.37Dx = 1.334 Mg m3
Monoclinic, P21/cMelting point = 441–442 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.893 (2) ÅCell parameters from 28 reflections
b = 14.248 (2) Åθ = 2.8–14.4°
c = 8.662 (1) ŵ = 0.09 mm1
β = 94.63 (1)°T = 291 K
V = 1709.0 (4) Å3Prism, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.014
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 1.5°
Graphite monochromatorh = 1616
ω scansk = 160
3489 measured reflectionsl = 010
3016 independent reflections3 standard reflections every 97 reflections
1944 reflections with I > 2σ(I) intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3016 reflectionsΔρmax = 0.17 e Å3
242 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0136 (14)
Crystal data top
C22H17NO3V = 1709.0 (4) Å3
Mr = 343.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.893 (2) ŵ = 0.09 mm1
b = 14.248 (2) ÅT = 291 K
c = 8.662 (1) Å0.30 × 0.25 × 0.20 mm
β = 94.63 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.014
3489 measured reflections3 standard reflections every 97 reflections
3016 independent reflections intensity decay: 2.5%
1944 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 0.94Δρmax = 0.17 e Å3
3016 reflectionsΔρmin = 0.16 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structure was solved by direct methods(Sheldrick, 1990) and successive difference Fourier syntheses. Refinement of F2 against ALL reflections. (The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35318 (11)0.33848 (10)0.16333 (18)0.0622 (4)
O20.21426 (10)0.45414 (10)0.57923 (17)0.0566 (4)
O30.01553 (9)0.61083 (11)0.19819 (16)0.0592 (4)
N0.28310 (11)0.39476 (10)0.37173 (18)0.0425 (4)
C10.19369 (13)0.56770 (14)0.0802 (2)0.0439 (5)
H10.25340.53790.08630.053*
C20.13603 (12)0.56452 (13)0.0578 (2)0.0439 (5)
H20.15720.53300.14280.053*
C30.04745 (13)0.60811 (13)0.0690 (2)0.0422 (5)
C40.01673 (14)0.65462 (15)0.0587 (2)0.0506 (5)
H40.04320.68400.05210.061*
C50.07454 (13)0.65744 (14)0.1953 (2)0.0455 (5)
H50.05300.68890.28000.055*
C60.16485 (12)0.61400 (12)0.2092 (2)0.0370 (5)
C70.22323 (13)0.62185 (12)0.3571 (2)0.0390 (5)
C80.21981 (16)0.67888 (15)0.4772 (3)0.0525 (6)
C90.30349 (15)0.63629 (14)0.5740 (2)0.0484 (5)
H90.28590.60950.67200.058*
C100.30681 (13)0.56229 (13)0.4394 (2)0.0378 (5)
C110.40003 (12)0.55680 (12)0.3638 (2)0.0366 (4)
C120.46988 (14)0.62763 (13)0.3860 (2)0.0427 (5)
C130.45852 (16)0.70108 (14)0.5006 (2)0.0526 (6)
H130.50380.74920.51010.063*
C140.38680 (16)0.70196 (15)0.5913 (3)0.0563 (6)
H140.38840.74610.67050.068*
C150.55197 (14)0.62181 (15)0.3053 (2)0.0516 (6)
H150.59820.66900.31750.062*
C160.56663 (15)0.54765 (16)0.2075 (3)0.0557 (6)
H160.62140.54610.15250.067*
C170.50016 (14)0.47614 (15)0.1914 (2)0.0482 (5)
H170.51080.42510.12800.058*
C180.41687 (13)0.48051 (12)0.2704 (2)0.0387 (5)
C190.34958 (14)0.40037 (13)0.2600 (2)0.0424 (5)
C200.26616 (13)0.46691 (13)0.4748 (2)0.0413 (5)
C210.22993 (15)0.30613 (13)0.3835 (3)0.0608 (6)
H21A0.18680.29780.29230.073*
H21B0.19350.30800.47300.073*
H21C0.27480.25480.39290.073*
C220.01312 (16)0.56599 (18)0.3339 (2)0.0639 (6)
H22A0.07060.59530.36530.077*
H22B0.03760.57150.41540.077*
H22C0.02570.50080.31240.077*
H80.1820 (15)0.7324 (16)0.494 (2)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0683 (10)0.0456 (9)0.0718 (10)0.0030 (8)0.0009 (8)0.0206 (8)
O20.0530 (9)0.0589 (10)0.0590 (9)0.0021 (7)0.0102 (8)0.0095 (8)
O30.0444 (8)0.0814 (11)0.0495 (9)0.0060 (7)0.0114 (7)0.0040 (8)
N0.0426 (9)0.0315 (9)0.0522 (10)0.0031 (7)0.0038 (8)0.0009 (8)
C10.0392 (11)0.0441 (11)0.0474 (12)0.0087 (9)0.0027 (9)0.0004 (10)
C20.0427 (11)0.0437 (11)0.0444 (11)0.0042 (9)0.0022 (9)0.0037 (10)
C30.0359 (10)0.0445 (11)0.0448 (11)0.0026 (9)0.0060 (9)0.0040 (10)
C40.0350 (10)0.0606 (14)0.0555 (13)0.0111 (10)0.0009 (10)0.0007 (12)
C50.0432 (11)0.0478 (12)0.0455 (12)0.0078 (10)0.0029 (9)0.0022 (10)
C60.0367 (10)0.0300 (10)0.0434 (11)0.0015 (8)0.0014 (9)0.0047 (9)
C70.0401 (10)0.0336 (10)0.0424 (11)0.0026 (9)0.0027 (9)0.0001 (9)
C80.0568 (13)0.0440 (13)0.0557 (14)0.0125 (11)0.0023 (11)0.0092 (11)
C90.0582 (13)0.0451 (12)0.0407 (11)0.0039 (10)0.0034 (10)0.0064 (9)
C100.0427 (11)0.0319 (10)0.0374 (10)0.0013 (8)0.0054 (8)0.0001 (9)
C110.0389 (10)0.0337 (10)0.0353 (10)0.0028 (8)0.0090 (8)0.0036 (9)
C120.0453 (11)0.0365 (11)0.0435 (11)0.0013 (9)0.0128 (9)0.0104 (9)
C130.0589 (13)0.0370 (12)0.0583 (14)0.0074 (10)0.0188 (12)0.0023 (11)
C140.0707 (15)0.0428 (12)0.0515 (13)0.0002 (11)0.0185 (12)0.0120 (10)
C150.0433 (12)0.0520 (13)0.0574 (14)0.0082 (10)0.0094 (11)0.0183 (11)
C160.0421 (12)0.0693 (16)0.0554 (13)0.0010 (11)0.0024 (10)0.0154 (13)
C170.0487 (12)0.0522 (13)0.0430 (12)0.0090 (10)0.0004 (10)0.0024 (10)
C180.0402 (10)0.0370 (11)0.0374 (10)0.0044 (9)0.0063 (9)0.0024 (9)
C190.0428 (11)0.0344 (11)0.0479 (12)0.0083 (9)0.0097 (10)0.0002 (10)
C200.0369 (10)0.0421 (11)0.0432 (11)0.0024 (9)0.0074 (9)0.0047 (10)
C210.0558 (13)0.0396 (12)0.0860 (17)0.0095 (10)0.0014 (12)0.0053 (12)
C220.0580 (14)0.0821 (17)0.0494 (13)0.0022 (13)0.0093 (11)0.0033 (13)
Geometric parameters (Å, º) top
O1—C191.220 (2)C9—H90.9800
O2—C201.215 (2)C10—C111.499 (3)
O3—C31.364 (2)C10—C201.513 (3)
O3—C221.423 (2)C11—C181.386 (2)
N—C191.393 (2)C11—C121.403 (2)
N—C201.394 (2)C12—C151.387 (3)
N—C211.471 (2)C12—C131.460 (3)
C1—C21.385 (2)C13—C141.318 (3)
C1—C61.385 (2)C13—H130.9300
C1—H10.9300C14—H140.9300
C2—C31.375 (2)C15—C161.380 (3)
C2—H20.9300C15—H150.9300
C3—C41.386 (3)C16—C171.375 (3)
C4—C51.376 (3)C16—H160.9300
C4—H40.9300C17—C181.393 (3)
C5—C61.396 (2)C17—H170.9300
C5—H50.9300C18—C191.474 (3)
C6—C71.464 (2)C21—H21A0.9600
C7—C81.323 (3)C21—H21B0.9600
C7—C101.563 (2)C21—H21C0.9600
C8—C91.505 (3)C22—H22A0.9600
C8—H80.94 (2)C22—H22B0.9600
C9—C141.486 (3)C22—H22C0.9600
C9—C101.576 (2)
C3—O3—C22117.47 (15)C18—C11—C10119.21 (16)
C19—N—C20123.94 (16)C12—C11—C10121.00 (17)
C19—N—C21117.54 (17)C15—C12—C11118.40 (19)
C20—N—C21118.49 (17)C15—C12—C13121.59 (19)
C2—C1—C6121.83 (17)C11—C12—C13119.84 (19)
C2—C1—H1119.1C14—C13—C12122.7 (2)
C6—C1—H1119.1C14—C13—H13118.6
C3—C2—C1119.88 (18)C12—C13—H13118.6
C3—C2—H2120.1C13—C14—C9123.65 (19)
C1—C2—H2120.1C13—C14—H14118.2
O3—C3—C2125.57 (18)C9—C14—H14118.2
O3—C3—C4115.01 (17)C16—C15—C12121.6 (2)
C2—C3—C4119.43 (18)C16—C15—H15119.2
C5—C4—C3120.27 (18)C12—C15—H15119.2
C5—C4—H4119.9C17—C16—C15119.9 (2)
C3—C4—H4119.9C17—C16—H16120.1
C4—C5—C6121.33 (19)C15—C16—H16120.1
C4—C5—H5119.3C16—C17—C18119.68 (19)
C6—C5—H5119.3C16—C17—H17120.2
C1—C6—C5117.27 (17)C18—C17—H17120.2
C1—C6—C7124.53 (16)C11—C18—C17120.54 (18)
C5—C6—C7118.19 (17)C11—C18—C19120.47 (17)
C8—C7—C6132.98 (18)C17—C18—C19118.91 (17)
C8—C7—C1092.74 (16)O1—C19—N120.11 (18)
C6—C7—C10134.11 (16)O1—C19—C18122.75 (19)
C7—C8—C996.60 (17)N—C19—C18117.06 (17)
C7—C8—H8132.1 (13)O2—C20—N120.49 (18)
C9—C8—H8131.0 (13)O2—C20—C10122.65 (18)
C14—C9—C8111.26 (17)N—C20—C10116.56 (17)
C14—C9—C10115.26 (17)N—C21—H21A109.5
C8—C9—C1085.70 (14)N—C21—H21B109.5
C14—C9—H9113.9H21A—C21—H21B109.5
C8—C9—H9113.9N—C21—H21C109.5
C10—C9—H9113.9H21A—C21—H21C109.5
C11—C10—C20113.05 (15)H21B—C21—H21C109.5
C11—C10—C7117.76 (15)O3—C22—H22A109.5
C20—C10—C7107.73 (14)O3—C22—H22B109.5
C11—C10—C9115.83 (15)H22A—C22—H22B109.5
C20—C10—C9114.65 (15)O3—C22—H22C109.5
C7—C10—C984.77 (13)H22A—C22—H22C109.5
C18—C11—C12119.79 (18)H22B—C22—H22C109.5
C6—C1—C2—C30.0 (3)C18—C11—C12—C153.9 (3)
C22—O3—C3—C20.9 (3)C10—C11—C12—C15175.90 (16)
C22—O3—C3—C4178.66 (19)C18—C11—C12—C13171.50 (16)
C1—C2—C3—O3179.38 (18)C10—C11—C12—C138.7 (2)
C1—C2—C3—C40.2 (3)C15—C12—C13—C14172.00 (19)
O3—C3—C4—C5179.38 (18)C11—C12—C13—C143.3 (3)
C2—C3—C4—C50.2 (3)C12—C13—C14—C98.1 (3)
C3—C4—C5—C60.0 (3)C8—C9—C14—C1394.3 (2)
C2—C1—C6—C50.3 (3)C10—C9—C14—C131.1 (3)
C2—C1—C6—C7178.50 (18)C11—C12—C15—C161.3 (3)
C4—C5—C6—C10.2 (3)C13—C12—C15—C16174.04 (17)
C4—C5—C6—C7178.61 (18)C12—C15—C16—C171.7 (3)
C1—C6—C7—C8161.4 (2)C15—C16—C17—C182.0 (3)
C5—C6—C7—C817.3 (3)C12—C11—C18—C173.7 (3)
C1—C6—C7—C1024.6 (3)C10—C11—C18—C17176.16 (15)
C5—C6—C7—C10156.70 (19)C12—C11—C18—C19172.96 (16)
C6—C7—C8—C9179.2 (2)C10—C11—C18—C197.2 (2)
C10—C7—C8—C93.48 (16)C16—C17—C18—C110.7 (3)
C7—C8—C9—C14112.0 (2)C16—C17—C18—C19175.99 (17)
C7—C8—C9—C103.45 (16)C20—N—C19—O1172.21 (16)
C8—C7—C10—C11119.82 (18)C21—N—C19—O19.6 (3)
C6—C7—C10—C1164.6 (3)C20—N—C19—C1810.9 (2)
C8—C7—C10—C20110.92 (17)C21—N—C19—C18167.30 (16)
C6—C7—C10—C2064.7 (3)C11—C18—C19—O1168.93 (17)
C8—C7—C10—C93.31 (16)C17—C18—C19—O114.4 (3)
C6—C7—C10—C9178.9 (2)C11—C18—C19—N14.3 (2)
C14—C9—C10—C119.8 (2)C17—C18—C19—N162.37 (16)
C8—C9—C10—C11121.29 (17)C19—N—C20—O2172.68 (17)
C14—C9—C10—C20144.29 (17)C21—N—C20—O25.5 (3)
C8—C9—C10—C20104.21 (17)C19—N—C20—C1013.4 (2)
C14—C9—C10—C7108.58 (17)C21—N—C20—C10168.38 (16)
C8—C9—C10—C72.92 (14)C11—C10—C20—O2153.14 (17)
C20—C10—C11—C1830.3 (2)C7—C10—C20—O275.0 (2)
C7—C10—C11—C1896.4 (2)C9—C10—C20—O217.4 (2)
C9—C10—C11—C18165.49 (15)C11—C10—C20—N33.1 (2)
C20—C10—C11—C12149.91 (16)C7—C10—C20—N98.76 (17)
C7—C10—C11—C1283.4 (2)C9—C10—C20—N168.86 (15)
C9—C10—C11—C1214.7 (2)

Experimental details

Crystal data
Chemical formulaC22H17NO3
Mr343.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.893 (2), 14.248 (2), 8.662 (1)
β (°) 94.63 (1)
V3)1709.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3489, 3016, 1944
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 0.94
No. of reflections3016
No. of parameters242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C7—C81.323 (3)C10—C111.499 (3)
C7—C101.563 (2)C11—C121.403 (2)
C8—C91.505 (3)C12—C131.460 (3)
C9—C141.486 (3)C13—C141.318 (3)
C9—C101.576 (2)
C8—C7—C1092.74 (16)C11—C10—C7117.76 (15)
C6—C7—C10134.11 (16)C20—C10—C7107.73 (14)
C7—C8—C996.60 (17)C11—C10—C9115.83 (15)
C8—C9—C1085.70 (14)C7—C10—C984.77 (13)
C22—O3—C3—C20.9 (3)C6—C7—C10—C2064.7 (3)
C1—C6—C7—C1024.6 (3)C8—C9—C10—C20104.21 (17)
C10—C7—C8—C93.48 (16)C8—C9—C10—C72.92 (14)
C8—C7—C10—C11119.82 (18)C8—C9—C14—C1394.3 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds