Download citation
Download citation
link to html
The title compound, [Cr(C22H23O2)(CO)5], is shown to have a slightly distorted octahedral geometry around the Cr atom and a Cr=C carbene bond length of 2.111 (5) Å, clearly showing double-bond character. The axial Cr-CCO bond trans to the Cr=C carbene bond is significantly shorter than the equatorial Cr-CCO bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017082/wn6168sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017082/wn6168Isup2.hkl
Contains datablock I

CCDC reference: 222790

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.038
  • wR factor = 0.113
  • Data-to-parameter ratio = 7.3

checkCIF/PLATON results

No syntax errors found



Alert level B REFNR01_ALERT_3_B Ratio of reflections to parameters is < 8 for a non-centrosymmetric structure, where ZMAX > 18 sine(theta)/lambda -0.1862 Proportion of unique data used 1.0000 Ratio reflections to parameters 7.2799
Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ..... 0.70 mm PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ... 7.28 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ..... ? PLAT128_ALERT_4_C Non-standard setting of Space group Pna21 .. Pc21n PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) . 2.64 Ratio PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .. C2 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang.. 8 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 1 C4 -CR1 -C1 -O1 67.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 2 C3 -CR1 -C1 -O1 -21.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 3 C5 -CR1 -C1 -O1 157.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 4 C2 -CR1 -C1 -O1 -116.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 5 C6 -CR1 -C1 -O1 -42.00 22.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 6 C1 -CR1 -C2 -O2 -45.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 7 C4 -CR1 -C2 -O2 15.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 8 C3 -CR1 -C2 -O2 -132.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 9 C5 -CR1 -C2 -O2 42.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 10 C6 -CR1 -C2 -O2 140.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 11 C1 -CR1 -C3 -O3 34.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 12 C4 -CR1 -C3 -O3 -56.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 13 C5 -CR1 -C3 -O3 21.00 12.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 14 C2 -CR1 -C3 -O3 122.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 15 C6 -CR1 -C3 -O3 -148.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 16 C1 -CR1 -C4 -O4 -10.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 17 C3 -CR1 -C4 -O4 76.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 18 C5 -CR1 -C4 -O4 -97.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 19 C2 -CR1 -C4 -O4 -70.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 20 C6 -CR1 -C4 -O4 165.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 21 C1 -CR1 -C5 -O5 17.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 22 C4 -CR1 -C5 -O5 107.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 23 C3 -CR1 -C5 -O5 30.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 24 C2 -CR1 -C5 -O5 -72.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 25 C6 -CR1 -C5 -O5 -161.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 28 C1 -CR1 -C6 -O6 160.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 33 C1 -CR1 -C6 -C9 -11.00 3.00 1.555 1.555 1.555 1.555
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 2315 Count of symmetry unique reflns 2319 Completeness (_total/calc) 99.83% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 34 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 30 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Few examples of highly reduced Fischer carbene complexes are found in the literature. However, Krusic et al. (1976) have reported the reduction of group 6 alkoxyaryl–carbene complexes by Na/K alloy, and Lee & Cooper (1990) have published results dealing with the reduction of [Bu3P(CO)4CrC(OMe)Ph] by potassium 1-methylnaphthalenide. In the case of reduction of α,β-unsaturated group 6 carbenes, there are few reports, and these deal mainly with the use of simple reducing agents (Gmez-Gallego et al., 2000; Mancheño et al., 1999). Studies have also been extended to include potassium graphite as a reducing agent for a variety of chromium and tungsten carbenes (Sierra et al., 2002). Normally, bis-carbene complexes are produced from this reaction when quenched with 10% H2SO4, but, in the case of reduction of pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)chromium(0), a product containing only one carbene moiety was isolated in good yield. From NMR spectral analysis, it was not possible to solve the structure and hence X-ray analysis was necessary.

The title compound, (I), crystallizes in the orthorhombic non-centrosymmetric space group Pc21n. The molecular structure, with the atomic numbering scheme, is shown in Fig. 1. The dihedral angle between phenyl group C16–C21 and the cyclopentadienyl ring is 82.1 (2)°, while that between phenyl group C22–C27 and the cyclopentadienyl ring is 27.2 (2)°. The two phenyl groups are almost perpendicular to each other, with an angle of 88.6 (1)° between the two planes. Atoms C6, O7 and C22 are displaced by 0.026 (8), 0.065 (8) and 0.045 (9) Å, respectively, from the plane of the cyclopentadienyl group; atom C6 is on the opposite side of the plane from atoms O7 and C22.

A slightly distorted octahedral geometry is present about the Cr atom. The Cr1C6 carbene bond length is 2.111 (5) Å, clearly showing double-bond character when compared to other Cr—C bonds (Orpen et al., 1994). The axial Cr—CCO bond trans to the CrC carbene bond is significantly shorter [1.832 (6) Å] than the equatorial Cr—CCO bonds [1.877 (7)–1.907 (7) Å]. This is in agreement with the results found in other investigations (Pohl et al., 1995; Fischer, 1974). The average value for the equatorial CO bonds is 1.138 (12) Å, compared to a value of 1.166 (7) Å for the axial CO bond, all in good agreement with the values found for other terminal carbon monoxide metal complexes (Orpen et al., 1994). All other bond lengths in the title molecule are within normal ranges (Allen et al., 1987).

Experimental top

Crystals were placed in a vial and dissolved by addition of a small amount of dichloromethane, followed by a few drops of n-hexane. Due to the dark colour of the solution it was impossible to determine the saturation point. Crystals were grown by vapour diffusion of the solvent in a refrigerator.

Refinement top

H atoms were refined using a riding model, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, C(methylene)—H = 0.97 Å and other Csp3—H = 0.98 Å. Uiso(H) values were set equal to 1.3Ueq (1.4Ueq for methyl H atoms) of the carrier atom.

Structure description top

Few examples of highly reduced Fischer carbene complexes are found in the literature. However, Krusic et al. (1976) have reported the reduction of group 6 alkoxyaryl–carbene complexes by Na/K alloy, and Lee & Cooper (1990) have published results dealing with the reduction of [Bu3P(CO)4CrC(OMe)Ph] by potassium 1-methylnaphthalenide. In the case of reduction of α,β-unsaturated group 6 carbenes, there are few reports, and these deal mainly with the use of simple reducing agents (Gmez-Gallego et al., 2000; Mancheño et al., 1999). Studies have also been extended to include potassium graphite as a reducing agent for a variety of chromium and tungsten carbenes (Sierra et al., 2002). Normally, bis-carbene complexes are produced from this reaction when quenched with 10% H2SO4, but, in the case of reduction of pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)chromium(0), a product containing only one carbene moiety was isolated in good yield. From NMR spectral analysis, it was not possible to solve the structure and hence X-ray analysis was necessary.

The title compound, (I), crystallizes in the orthorhombic non-centrosymmetric space group Pc21n. The molecular structure, with the atomic numbering scheme, is shown in Fig. 1. The dihedral angle between phenyl group C16–C21 and the cyclopentadienyl ring is 82.1 (2)°, while that between phenyl group C22–C27 and the cyclopentadienyl ring is 27.2 (2)°. The two phenyl groups are almost perpendicular to each other, with an angle of 88.6 (1)° between the two planes. Atoms C6, O7 and C22 are displaced by 0.026 (8), 0.065 (8) and 0.045 (9) Å, respectively, from the plane of the cyclopentadienyl group; atom C6 is on the opposite side of the plane from atoms O7 and C22.

A slightly distorted octahedral geometry is present about the Cr atom. The Cr1C6 carbene bond length is 2.111 (5) Å, clearly showing double-bond character when compared to other Cr—C bonds (Orpen et al., 1994). The axial Cr—CCO bond trans to the CrC carbene bond is significantly shorter [1.832 (6) Å] than the equatorial Cr—CCO bonds [1.877 (7)–1.907 (7) Å]. This is in agreement with the results found in other investigations (Pohl et al., 1995; Fischer, 1974). The average value for the equatorial CO bonds is 1.138 (12) Å, compared to a value of 1.166 (7) Å for the axial CO bond, all in good agreement with the values found for other terminal carbon monoxide metal complexes (Orpen et al., 1994). All other bond lengths in the title molecule are within normal ranges (Allen et al., 1987).

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle & Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (Version 8; McArdle, 1993).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
(I) top
Crystal data top
[Cr(C22H23O2)(CO)5]Dx = 1.347 Mg m3
Mr = 510.45Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, Pc21nCell parameters from 3 reflections
a = 10.174 (4) Åθ = 12–16°
b = 12.653 (3) ŵ = 0.50 mm1
c = 19.559 (9) ÅT = 298 K
V = 2517.9 (16) Å3Block, dark red
Z = 40.70 × 0.50 × 0.40 mm
F(000) = 1056
Data collection top
Enraf-Nonius CAD-4
diffractometer
1658 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 012
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 014
Tmin = 0.722, Tmax = 0.826l = 023
2315 measured reflections3 standard reflections every 120 min
2315 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.005
2315 reflectionsΔρmax = 0.24 e Å3
318 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Cr(C22H23O2)(CO)5]V = 2517.9 (16) Å3
Mr = 510.45Z = 4
Orthorhombic, Pc21nMo Kα radiation
a = 10.174 (4) ŵ = 0.50 mm1
b = 12.653 (3) ÅT = 298 K
c = 19.559 (9) Å0.70 × 0.50 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1658 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Rint = 0.000
Tmin = 0.722, Tmax = 0.8263 standard reflections every 120 min
2315 measured reflections intensity decay: 5%
2315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.24 e Å3
S = 1.00Δρmin = 0.23 e Å3
2315 reflectionsAbsolute structure: Flack (1983)
318 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.6150 (0.0127) x + 6.3307 (0.0256) y - 3.5350 (0.0481) z = 2.7846 (0.0146)

* -0.0037 (0.0035) C16 * -0.0028 (0.0041) C17 * 0.0098 (0.0045) C18 * -0.0104 (0.0044) C19 * 0.0037 (0.0043) C20 * 0.0033 (0.0039) C21 - 0.0147 (0.0075) C15

Rms deviation of fitted atoms = 0.0065

- 3.0638 (0.0232) x + 11.3722 (0.0140) y + 6.2317 (0.0455) z = 6.1517 (0.0063)

Angle to previous plane (with approximate e.s.d.) = 82.12 (0.17)

* -0.0030 (0.0028) C9 * 0.0047 (0.0030) C10 * -0.0046 (0.0032) C13 * 0.0027 (0.0030) C14 * 0.0002 (0.0026) C15 - 0.0256 (0.0080) C6 0.0649 (0.0077) O7 - 1.1617 (0.0076) C16 0.0449 (0.0086) C22

Rms deviation of fitted atoms = 0.0035

- 5.5054 (0.0222) x + 10.5921 (0.0187) y - 1.5653 (0.0521) z = 4.5037 (0.0157)

Angle to previous plane (with approximate e.s.d.) = 27.15 (0.22)

* 0.0098 (0.0039) C22 * -0.0122 (0.0045) C23 * 0.0064 (0.0052) C24 * 0.0020 (0.0050) C25 * -0.0043 (0.0046) C26 * -0.0016 (0.0041) C27 0.0915 (0.0084) C14

Rms deviation of fitted atoms = 0.0072

4.2051 (0.0112) x + 1.3584 (0.0147) y - 17.6860 (0.0126) z = 1.8704 (0.0092)

Angle to previous plane (with approximate e.s.d.) = 86.48 (0.16)

* -0.1167 (0.0019) Cr1 * -0.0805 (0.0053) C2 * 0.0012 (0.0055) C3 * -0.0959 (0.0068) C4 * -0.0294 (0.0057) C5 * 0.0085 (0.0046) O2 * 0.1388 (0.0043) O3 * 0.0142 (0.0053) O4 * 0.1598 (0.0044) O5

Rms deviation of fitted atoms = 0.0914

- 7.3129 (0.0101) x + 8.1581 (0.0123) y - 5.0872 (0.0269) z = 1.9320 (0.0098)

Angle to previous plane (with approximate e.s.d.) = 89.58 (0.10)

* 0.0043 (0.0022) Cr1 * 0.0251 (0.0057) C1 * 0.0002 (0.0054) C3 * 0.0476 (0.0037) C6 * -0.0377 (0.0051) C5 * 0.0248 (0.0043) O1 * -0.0457 (0.0044) O3 * -0.0187 (0.0040) O5

Rms deviation of fitted atoms = 0.0304

6.0530 (0.0109) x + 9.0005 (0.0119) y + 7.3193 (0.0255) z = 7.3881 (0.0059)

Angle to previous plane (with approximate e.s.d.) = 86.20 (0.09)

* -0.0035 (0.0022) Cr1 * -0.0380 (0.0056) C1 * 0.0262 (0.0048) C2 * 0.0641 (0.0057) C4 * -0.1524 (0.0038) C6 * -0.0932 (0.0041) O1 * 0.1109 (0.0042) O2 * 0.0858 (0.0044) O4

Rms deviation of fitted atoms = 0.0850

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.34713 (6)0.56523 (7)0.02679 (4)0.0489 (2)
O10.4667 (5)0.5881 (6)0.1125 (3)0.112 (2)
O70.0140 (3)0.5384 (3)0.02193 (17)0.0581 (11)
O60.2993 (3)0.5431 (3)0.18310 (16)0.0532 (9)
O20.1561 (5)0.7383 (5)0.0124 (3)0.0913 (17)
O30.1965 (5)0.3841 (5)0.0374 (3)0.0949 (16)
O50.5250 (5)0.7472 (4)0.0674 (3)0.0905 (15)
O40.5598 (6)0.4069 (5)0.0578 (4)0.117 (2)
C10.4208 (6)0.5809 (6)0.0581 (3)0.0715 (17)
C20.2223 (6)0.6716 (5)0.0032 (3)0.0541 (14)
C30.2498 (6)0.4536 (6)0.0116 (3)0.0622 (16)
C40.4780 (6)0.4666 (6)0.0491 (4)0.0738 (19)
C50.4571 (6)0.6772 (6)0.0566 (3)0.0616 (16)
C60.2478 (4)0.5396 (3)0.1201 (2)0.0427 (11)
C70.4315 (5)0.5753 (7)0.1986 (3)0.0716 (16)
H7A0.44290.65000.18930.093*
H7B0.49380.53590.17110.093*
C80.4523 (6)0.5531 (8)0.2725 (3)0.097 (2)
H8A0.39390.59610.29910.136*
H8B0.54160.56920.28450.136*
H8C0.43500.47990.28140.136*
C90.1164 (4)0.5013 (4)0.1291 (2)0.0384 (10)
C100.0131 (4)0.4986 (4)0.0845 (3)0.0413 (11)
C110.1019 (6)0.5310 (6)0.0217 (3)0.0675 (18)
H11A0.14310.46250.01560.088*
H11B0.07580.53740.06920.088*
C120.1975 (8)0.6160 (8)0.0045 (5)0.101 (3)
H12A0.23800.60070.03870.142*
H12B0.26380.61970.03930.142*
H12C0.15240.68250.00170.142*
C130.1004 (4)0.4499 (4)0.1160 (2)0.0456 (11)
H130.18100.43910.09460.059*
C140.0721 (4)0.4230 (4)0.1802 (2)0.0409 (11)
C150.0695 (4)0.4523 (4)0.1960 (2)0.0382 (10)
H150.07040.50660.23170.050*
C160.1496 (4)0.3586 (4)0.2199 (2)0.0388 (11)
C170.1874 (5)0.2810 (4)0.1730 (3)0.0528 (14)
H170.16320.28720.12740.069*
C180.2607 (6)0.1951 (5)0.1942 (4)0.0680 (16)
H180.28740.14470.16260.088*
C190.2941 (5)0.1840 (5)0.2616 (4)0.0660 (16)
H190.34080.12480.27590.086*
C200.2592 (6)0.2595 (5)0.3077 (3)0.0639 (15)
H200.28390.25290.35330.083*
C210.1872 (5)0.3458 (5)0.2867 (3)0.0535 (14)
H210.16340.39670.31870.070*
C220.1636 (4)0.3750 (4)0.2296 (3)0.0458 (12)
C230.2683 (5)0.3150 (5)0.2059 (3)0.0597 (15)
H230.27670.30120.15940.078*
C240.3597 (7)0.2760 (6)0.2513 (4)0.078 (2)
H240.43110.23790.23480.102*
C250.3478 (6)0.2920 (6)0.3204 (4)0.081 (2)
H250.40950.26450.35060.105*
C260.2429 (6)0.3493 (6)0.3439 (4)0.0744 (19)
H260.23360.36050.39070.097*
C270.1498 (5)0.3914 (5)0.2990 (3)0.0552 (13)
H270.07900.43010.31570.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0290 (3)0.0553 (4)0.0624 (4)0.0020 (4)0.0045 (3)0.0004 (5)
O10.102 (4)0.142 (6)0.091 (3)0.022 (4)0.043 (3)0.008 (3)
O70.0302 (15)0.084 (3)0.060 (2)0.0041 (17)0.0077 (15)0.017 (2)
O60.0316 (15)0.070 (3)0.0582 (19)0.0088 (17)0.0100 (14)0.0044 (18)
O20.075 (3)0.072 (3)0.127 (4)0.011 (3)0.014 (3)0.031 (3)
O30.079 (3)0.084 (4)0.122 (4)0.020 (3)0.010 (3)0.043 (3)
O50.069 (3)0.090 (3)0.113 (4)0.037 (3)0.003 (3)0.005 (3)
O40.084 (4)0.122 (5)0.146 (5)0.049 (4)0.034 (3)0.024 (4)
C10.054 (3)0.082 (5)0.078 (4)0.011 (3)0.023 (3)0.002 (4)
C20.044 (3)0.057 (4)0.062 (3)0.009 (3)0.001 (3)0.006 (3)
C30.052 (4)0.068 (4)0.067 (4)0.001 (3)0.014 (3)0.007 (3)
C40.045 (4)0.079 (5)0.097 (5)0.009 (3)0.009 (4)0.009 (4)
C50.041 (3)0.072 (4)0.072 (4)0.010 (3)0.004 (3)0.003 (3)
C60.033 (2)0.031 (2)0.064 (3)0.0046 (18)0.004 (2)0.003 (2)
C70.041 (3)0.086 (4)0.088 (4)0.016 (3)0.018 (3)0.007 (4)
C80.062 (3)0.128 (6)0.101 (5)0.026 (5)0.038 (3)0.018 (5)
C90.025 (2)0.036 (2)0.054 (3)0.0016 (19)0.0008 (19)0.003 (2)
C100.026 (2)0.044 (3)0.054 (3)0.005 (2)0.000 (2)0.003 (2)
C110.045 (3)0.093 (5)0.064 (3)0.010 (3)0.019 (3)0.008 (3)
C120.072 (5)0.114 (6)0.118 (6)0.021 (5)0.012 (5)0.034 (5)
C130.026 (2)0.058 (3)0.053 (3)0.001 (2)0.009 (2)0.001 (2)
C140.027 (2)0.035 (2)0.061 (3)0.0058 (19)0.002 (2)0.006 (2)
C150.028 (2)0.043 (2)0.044 (2)0.008 (2)0.0035 (19)0.000 (2)
C160.022 (2)0.044 (3)0.050 (3)0.001 (2)0.002 (2)0.005 (2)
C170.049 (3)0.048 (3)0.061 (3)0.018 (3)0.001 (3)0.004 (3)
C180.067 (4)0.057 (4)0.080 (4)0.020 (3)0.004 (3)0.008 (3)
C190.039 (3)0.055 (4)0.103 (5)0.015 (3)0.004 (3)0.018 (4)
C200.052 (3)0.077 (4)0.062 (3)0.014 (3)0.008 (3)0.014 (3)
C210.046 (3)0.062 (4)0.053 (3)0.014 (3)0.004 (2)0.002 (3)
C220.026 (2)0.048 (3)0.063 (3)0.007 (2)0.007 (2)0.006 (2)
C230.038 (3)0.067 (4)0.073 (4)0.009 (3)0.002 (3)0.011 (3)
C240.048 (4)0.074 (5)0.113 (6)0.016 (3)0.001 (4)0.022 (4)
C250.045 (3)0.090 (5)0.107 (6)0.010 (3)0.026 (4)0.039 (5)
C260.058 (4)0.092 (5)0.073 (4)0.023 (4)0.023 (3)0.014 (4)
C270.041 (3)0.061 (3)0.064 (3)0.011 (3)0.011 (2)0.001 (3)
Geometric parameters (Å, º) top
Cr1—C11.832 (6)C12—H12C0.9600
Cr1—C41.877 (7)C13—C141.333 (7)
Cr1—C31.881 (7)C13—H130.9300
Cr1—C51.897 (7)C14—C221.472 (7)
Cr1—C21.907 (7)C14—C151.519 (6)
Cr1—C62.111 (5)C15—C161.513 (6)
O1—C11.166 (7)C15—H150.9800
O7—C101.324 (6)C16—C211.370 (7)
O7—C111.458 (6)C16—C171.398 (7)
O6—C61.340 (5)C17—C181.381 (8)
O6—C71.437 (6)C17—H170.9300
O2—C21.122 (7)C18—C191.368 (9)
O3—C31.150 (8)C18—H180.9300
O5—C51.143 (7)C19—C201.361 (9)
O4—C41.137 (8)C19—H190.9300
C6—C91.433 (6)C20—C211.377 (8)
C7—C81.486 (9)C20—H200.9300
C7—H7A0.9700C21—H210.9300
C7—H7B0.9700C22—C271.381 (7)
C8—H8A0.9600C22—C231.387 (8)
C8—H8B0.9600C23—C241.378 (9)
C8—H8C0.9600C23—H230.9300
C9—C101.365 (6)C24—C251.371 (10)
C9—C151.524 (6)C24—H240.9300
C10—C131.446 (6)C25—C261.370 (10)
C11—C121.490 (11)C25—H250.9300
C11—H11A0.9700C26—C271.398 (8)
C11—H11B0.9700C26—H260.9300
C12—H12A0.9600C27—H270.9300
C12—H12B0.9600
C1—Cr1—C489.6 (3)C11—C12—H12C109.5
C1—Cr1—C386.3 (3)H12A—C12—H12C109.5
C4—Cr1—C388.1 (3)H12B—C12—H12C109.5
C1—Cr1—C587.5 (3)C14—C13—C10109.7 (4)
C4—Cr1—C590.4 (3)C14—C13—H13125.2
C3—Cr1—C5173.6 (3)C10—C13—H13125.2
C1—Cr1—C288.7 (3)C13—C14—C22125.9 (4)
C4—Cr1—C2176.6 (3)C13—C14—C15109.5 (4)
C3—Cr1—C294.8 (2)C22—C14—C15124.6 (4)
C5—Cr1—C286.5 (3)C16—C15—C14112.4 (4)
C1—Cr1—C6174.7 (2)C16—C15—C9114.6 (4)
C4—Cr1—C692.1 (3)C14—C15—C9102.8 (3)
C3—Cr1—C688.7 (2)C16—C15—H15108.9
C5—Cr1—C697.5 (2)C14—C15—H15108.9
C2—Cr1—C689.9 (2)C9—C15—H15108.9
C10—O7—C11120.8 (4)C21—C16—C17117.8 (5)
C6—O6—C7124.7 (4)C21—C16—C15122.6 (4)
O1—C1—Cr1178.2 (7)C17—C16—C15119.7 (4)
O2—C2—Cr1175.1 (5)C18—C17—C16120.3 (5)
O3—C3—Cr1176.0 (6)C18—C17—H17119.9
O4—C4—Cr1175.0 (8)C16—C17—H17119.9
O5—C5—Cr1172.8 (6)C19—C18—C17120.3 (6)
O6—C6—C9105.3 (4)C19—C18—H18119.9
O6—C6—Cr1127.1 (3)C17—C18—H18119.9
C9—C6—Cr1127.2 (3)C20—C19—C18120.1 (6)
O6—C7—C8106.6 (5)C20—C19—H19120.0
O6—C7—H7A110.4C18—C19—H19120.0
C8—C7—H7A110.4C19—C20—C21119.8 (6)
O6—C7—H7B110.4C19—C20—H20120.1
C8—C7—H7B110.4C21—C20—H20120.1
H7A—C7—H7B108.6C16—C21—C20121.8 (6)
C7—C8—H8A109.5C16—C21—H21119.1
C7—C8—H8B109.5C20—C21—H21119.1
H8A—C8—H8B109.5C27—C22—C23119.2 (5)
C7—C8—H8C109.5C27—C22—C14121.2 (5)
H8A—C8—H8C109.5C23—C22—C14119.5 (5)
H8B—C8—H8C109.5C24—C23—C22120.0 (7)
C10—C9—C6130.4 (4)C24—C23—H23120.0
C10—C9—C15107.3 (4)C22—C23—H23120.0
C6—C9—C15122.3 (4)C25—C24—C23121.5 (7)
O7—C10—C9125.1 (4)C25—C24—H24119.3
O7—C10—C13124.1 (4)C23—C24—H24119.3
C9—C10—C13110.8 (4)C26—C25—C24118.6 (6)
O7—C11—C12110.5 (6)C26—C25—H25120.7
O7—C11—H11A109.6C24—C25—H25120.7
C12—C11—H11A109.6C25—C26—C27121.2 (7)
O7—C11—H11B109.6C25—C26—H26119.4
C12—C11—H11B109.6C27—C26—H26119.4
H11A—C11—H11B108.1C22—C27—C26119.5 (6)
C11—C12—H12A109.5C22—C27—H27120.2
C11—C12—H12B109.5C26—C27—H27120.2
H12A—C12—H12B109.5
C4—Cr1—C1—O167 (20)C11—O7—C10—C132.9 (8)
C3—Cr1—C1—O121 (20)C6—C9—C10—O73.9 (8)
C5—Cr1—C1—O1157 (20)C15—C9—C10—O7176.8 (4)
C2—Cr1—C1—O1116 (20)C6—C9—C10—C13178.6 (5)
C6—Cr1—C1—O142 (22)C15—C9—C10—C130.7 (5)
C1—Cr1—C2—O245 (7)C10—O7—C11—C1281.6 (7)
C4—Cr1—C2—O215 (11)O7—C10—C13—C14176.6 (4)
C3—Cr1—C2—O2132 (7)C9—C10—C13—C141.0 (6)
C5—Cr1—C2—O242 (7)C10—C13—C14—C22177.7 (5)
C6—Cr1—C2—O2140 (7)C10—C13—C14—C150.7 (6)
C1—Cr1—C3—O334 (10)C13—C14—C15—C16123.5 (4)
C4—Cr1—C3—O356 (10)C22—C14—C15—C1658.0 (6)
C5—Cr1—C3—O321 (12)C13—C14—C15—C90.3 (5)
C2—Cr1—C3—O3122 (10)C22—C14—C15—C9178.2 (4)
C6—Cr1—C3—O3148 (10)C10—C9—C15—C16122.6 (4)
C1—Cr1—C4—O410 (8)C6—C9—C15—C1656.8 (6)
C3—Cr1—C4—O476 (8)C10—C9—C15—C140.3 (5)
C5—Cr1—C4—O497 (8)C6—C9—C15—C14179.1 (4)
C2—Cr1—C4—O470 (10)C14—C15—C16—C21106.7 (5)
C6—Cr1—C4—O4165 (8)C9—C15—C16—C21136.4 (5)
C1—Cr1—C5—O517 (4)C14—C15—C16—C1773.2 (6)
C4—Cr1—C5—O5107 (4)C9—C15—C16—C1743.7 (6)
C3—Cr1—C5—O530 (6)C21—C16—C17—C180.2 (8)
C2—Cr1—C5—O572 (4)C15—C16—C17—C18179.9 (5)
C6—Cr1—C5—O5161 (4)C16—C17—C18—C191.6 (9)
C7—O6—C6—C9178.8 (5)C17—C18—C19—C202.3 (10)
C7—O6—C6—Cr16.3 (7)C18—C19—C20—C211.7 (9)
C1—Cr1—C6—O6160 (3)C17—C16—C21—C200.4 (8)
C4—Cr1—C6—O651.9 (5)C15—C16—C21—C20179.5 (5)
C3—Cr1—C6—O6139.9 (4)C19—C20—C21—C160.4 (9)
C5—Cr1—C6—O638.8 (4)C13—C14—C22—C27151.1 (5)
C2—Cr1—C6—O6125.3 (4)C15—C14—C22—C2727.1 (7)
C1—Cr1—C6—C911 (3)C13—C14—C22—C2326.8 (8)
C4—Cr1—C6—C9119.0 (4)C15—C14—C22—C23155.1 (5)
C3—Cr1—C6—C931.0 (4)C27—C22—C23—C242.5 (9)
C5—Cr1—C6—C9150.3 (4)C14—C22—C23—C24175.4 (6)
C2—Cr1—C6—C963.8 (4)C22—C23—C24—C252.2 (11)
C6—O6—C7—C8172.4 (6)C23—C24—C25—C260.8 (11)
O6—C6—C9—C10167.9 (5)C24—C25—C26—C270.2 (10)
Cr1—C6—C9—C1019.6 (7)C23—C22—C27—C261.4 (8)
O6—C6—C9—C1512.9 (6)C14—C22—C27—C26176.4 (5)
Cr1—C6—C9—C15159.6 (3)C25—C26—C27—C220.1 (9)
C11—O7—C10—C9179.8 (5)

Experimental details

Crystal data
Chemical formula[Cr(C22H23O2)(CO)5]
Mr510.45
Crystal system, space groupOrthorhombic, Pc21n
Temperature (K)298
a, b, c (Å)10.174 (4), 12.653 (3), 19.559 (9)
V3)2517.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.70 × 0.50 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
Absorption correctionPart of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.722, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
2315, 2315, 1658
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.00
No. of reflections2315
No. of parameters318
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23
Absolute structureFlack (1983)
Absolute structure parameter0.02 (3)

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992), CELDIM in CAD-4-PC Software, XCAD4 (McArdle & Higgins, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), OSCAIL (Version 8; McArdle, 1993).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds