Download citation
Download citation
link to html
The reaction of Cs2S3, Ge and S yields single crystals of tetracesium digermanium octa­sulfide, Cs4Ge2S8. The structure contains the novel dinuclear anion [Ge2S8]4-, and is another example of a chalcogenidogermanate(IV) exhibiting S2 bridging units. Two GeS4 tetrahedra in the anion are linked via S-S bonds, yielding a six-membered ring which displays a chair conformation and crystallographic C2h symmetry. The anions are connected via Cs+ ions. The compound crystallizes with the Cs4Ge2Se8 structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018695/bt6330sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018695/bt6330Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](S-S) = 0.001 Å
  • R factor = 0.021
  • wR factor = 0.051
  • Data-to-parameter ratio = 34.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: DIF4 (Stoe & Cie, 1990); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

Tetracaesium digermanium octasulfide top
Crystal data top
Cs4Ge2S8F(000) = 824
Mr = 933.42Dx = 3.450 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 108 reflections
a = 14.721 (2) Åθ = 14–19°
b = 7.364 (1) ŵ = 12.23 mm1
c = 9.820 (1) ÅT = 293 K
β = 122.43 (1)°Polyhedron, orange
V = 898.5 (2) Å30.12 × 0.08 × 0.06 mm
Z = 2
Data collection top
Phillips PW1100 four-circle
diffractometer
1244 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 30.0°, θmin = 2.5°
ω/θ scansh = 2018
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
k = 1010
Tmin = 0.322, Tmax = 0.480l = 1313
4059 measured reflections4 standard reflections every 120 min
1417 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0206P)2 + 2.6105P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.92 e Å3
1417 reflectionsΔρmin = 0.87 e Å3
41 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00151 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.16369 (2)0.00000.28823 (4)0.03154 (9)
Cs20.41590 (2)0.00000.15007 (3)0.03007 (9)
Ge10.15583 (4)0.00000.70131 (5)0.02168 (10)
S10.31312 (10)0.00000.73583 (14)0.0323 (2)
S20.12490 (9)0.00000.89111 (13)0.0283 (2)
S30.07944 (6)0.24278 (10)0.53104 (9)0.02617 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.03182 (15)0.03397 (15)0.03260 (15)0.0000.01977 (13)0.000
Cs20.02964 (15)0.03338 (14)0.02519 (14)0.0000.01336 (11)0.000
Ge10.0223 (2)0.02382 (19)0.0194 (2)0.0000.01150 (17)0.000
S10.0250 (5)0.0424 (6)0.0321 (6)0.0000.0170 (5)0.000
S20.0293 (5)0.0352 (5)0.0237 (5)0.0000.0165 (4)0.000
S30.0263 (4)0.0251 (3)0.0265 (3)0.0016 (3)0.0138 (3)0.0019 (3)
Geometric parameters (Å, º) top
Cs1—S2i3.6229 (13)Cs2—Ge1iv4.2959 (5)
Cs1—S2ii3.6256 (12)Cs2—Ge1v4.2959 (5)
Cs1—S33.6866 (8)Ge1—S22.1428 (11)
Cs1—S3iii3.6866 (8)Ge1—S12.1528 (12)
Cs1—S13.7132 (13)Ge1—S3iii2.2891 (8)
Cs1—S1iv3.7170 (5)Ge1—S32.2891 (8)
Cs1—S1v3.7170 (5)Ge1—Cs2xi3.9977 (9)
Cs1—S3iv3.7200 (9)Ge1—Cs2iv4.2959 (5)
Cs1—S3vi3.7200 (9)Ge1—Cs2v4.2959 (5)
Cs1—Ge14.1196 (6)S1—Cs2xi3.4979 (13)
Cs1—Cs24.5857 (7)S1—Cs2viii3.5177 (13)
Cs1—Cs2vii4.8369 (6)S1—Cs1iv3.7170 (5)
Cs2—S1ii3.4979 (13)S1—Cs1v3.7170 (5)
Cs2—S1viii3.5177 (13)S2—Cs1i3.6229 (13)
Cs2—S2ii3.6241 (14)S2—Cs2xi3.6241 (14)
Cs2—S3iv3.6289 (8)S2—Cs1xi3.6256 (12)
Cs2—S3vi3.6289 (8)S2—Cs2v3.7176 (5)
Cs2—S3ix3.7040 (9)S2—Cs2iv3.7176 (5)
Cs2—S3x3.7040 (9)S3—S3xii2.0767 (15)
Cs2—S2v3.7176 (5)S3—Cs2iv3.6289 (8)
Cs2—S2iv3.7176 (5)S3—Cs2xiii3.7040 (9)
Cs2—Ge1ii3.9977 (9)S3—Cs1iv3.7200 (9)
S2i—Cs1—S2ii90.56 (3)S1viii—Cs2—Ge1ii127.10 (2)
S2i—Cs1—S366.48 (2)S2ii—Cs2—Ge1ii32.183 (19)
S2ii—Cs1—S3141.450 (18)S3iv—Cs2—Ge1ii120.997 (16)
S2i—Cs1—S3iii66.48 (2)S3vi—Cs2—Ge1ii120.997 (16)
S2ii—Cs1—S3iii141.450 (18)S3ix—Cs2—Ge1ii146.395 (13)
S3—Cs1—S3iii58.02 (2)S3x—Cs2—Ge1ii146.395 (13)
S2i—Cs1—S1111.80 (3)S2v—Cs2—Ge1ii82.920 (18)
S2ii—Cs1—S1157.64 (3)S2iv—Cs2—Ge1ii82.920 (18)
S3—Cs1—S154.95 (2)S1ii—Cs2—Ge1iv111.300 (11)
S3iii—Cs1—S154.95 (2)S1viii—Cs2—Ge1iv109.581 (12)
S2i—Cs1—S1iv95.326 (18)S2ii—Cs2—Ge1iv79.919 (12)
S2ii—Cs1—S1iv84.174 (18)S3iv—Cs2—Ge1iv32.198 (13)
S3—Cs1—S1iv68.59 (2)S3vi—Cs2—Ge1iv92.783 (16)
S3iii—Cs1—S1iv126.56 (2)S3ix—Cs2—Ge1iv50.477 (14)
S1—Cs1—S1iv93.379 (19)S3x—Cs2—Ge1iv103.899 (16)
S2i—Cs1—S1v95.326 (18)S2v—Cs2—Ge1iv146.205 (19)
S2ii—Cs1—S1v84.174 (18)S2iv—Cs2—Ge1iv29.921 (17)
S3—Cs1—S1v126.56 (2)Ge1ii—Cs2—Ge1iv96.311 (9)
S3iii—Cs1—S1v68.59 (2)S1ii—Cs2—Ge1v111.300 (11)
S1—Cs1—S1v93.379 (19)S1viii—Cs2—Ge1v109.581 (12)
S1iv—Cs1—S1v164.27 (4)S2ii—Cs2—Ge1v79.919 (12)
S2i—Cs1—S3iv149.192 (13)S3iv—Cs2—Ge1v92.783 (16)
S2ii—Cs1—S3iv92.67 (2)S3vi—Cs2—Ge1v32.198 (13)
S3—Cs1—S3iv93.036 (19)S3ix—Cs2—Ge1v103.899 (16)
S3iii—Cs1—S3iv123.149 (15)S3x—Cs2—Ge1v50.477 (14)
S1—Cs1—S3iv68.28 (2)S2v—Cs2—Ge1v29.921 (17)
S1iv—Cs1—S3iv54.65 (2)S2iv—Cs2—Ge1v146.205 (19)
S1v—Cs1—S3iv115.48 (2)Ge1ii—Cs2—Ge1v96.311 (9)
S2i—Cs1—S3vi149.192 (13)Ge1iv—Cs2—Ge1v117.983 (14)
S2ii—Cs1—S3vi92.67 (2)S2—Ge1—S1125.13 (5)
S3—Cs1—S3vi123.149 (15)S2—Ge1—S3iii112.65 (3)
S3iii—Cs1—S3vi93.036 (19)S1—Ge1—S3iii100.40 (3)
S1—Cs1—S3vi68.28 (2)S2—Ge1—S3112.65 (3)
S1iv—Cs1—S3vi115.48 (2)S1—Ge1—S3100.40 (3)
S1v—Cs1—S3vi54.65 (2)S3iii—Ge1—S3102.71 (4)
S3iv—Cs1—S3vi61.22 (3)S2—Ge1—Cs2xi64.26 (4)
S2i—Cs1—Ge180.44 (2)S1—Ge1—Cs2xi60.86 (3)
S2ii—Cs1—Ge1171.00 (2)S3iii—Ge1—Cs2xi127.60 (2)
S3—Cs1—Ge133.523 (13)S3—Ge1—Cs2xi127.60 (2)
S3iii—Cs1—Ge133.523 (13)S2—Ge1—Cs1171.03 (4)
S1—Cs1—Ge131.359 (19)S1—Ge1—Cs163.85 (4)
S1iv—Cs1—Ge196.582 (18)S3iii—Ge1—Cs162.80 (2)
S1v—Cs1—Ge196.582 (18)S3—Ge1—Cs162.80 (2)
S3iv—Cs1—Ge195.069 (17)Cs2xi—Ge1—Cs1124.710 (15)
S3vi—Cs1—Ge195.069 (17)S2—Ge1—Cs2iv59.926 (8)
S2i—Cs1—Cs2141.31 (2)S1—Ge1—Cs2iv112.711 (15)
S2ii—Cs1—Cs250.75 (2)S3iii—Ge1—Cs2iv143.47 (3)
S3—Cs1—Cs2142.933 (13)S3—Ge1—Cs2iv57.64 (2)
S3iii—Cs1—Cs2142.933 (13)Cs2xi—Ge1—Cs2iv83.689 (9)
S1—Cs1—Cs2106.89 (2)Cs1—Ge1—Cs2iv118.446 (7)
S1iv—Cs1—Cs282.222 (18)S2—Ge1—Cs2v59.927 (8)
S1v—Cs1—Cs282.222 (18)S1—Ge1—Cs2v112.711 (15)
S3iv—Cs1—Cs250.508 (14)S3iii—Ge1—Cs2v57.64 (2)
S3vi—Cs1—Cs250.508 (14)S3—Ge1—Cs2v143.47 (3)
Ge1—Cs1—Cs2138.250 (13)Cs2xi—Ge1—Cs2v83.689 (9)
S2i—Cs1—Cs2vii49.631 (7)Cs1—Ge1—Cs2v118.446 (7)
S2ii—Cs1—Cs2vii92.188 (15)Cs2iv—Ge1—Cs2v117.983 (14)
S3—Cs1—Cs2vii94.928 (16)Ge1—S1—Cs2xi86.62 (4)
S3iii—Cs1—Cs2vii49.277 (14)Ge1—S1—Cs2viii172.04 (5)
S1—Cs1—Cs2vii102.179 (15)Cs2xi—S1—Cs2viii85.42 (3)
S1iv—Cs1—Cs2vii144.82 (2)Ge1—S1—Cs184.79 (4)
S1v—Cs1—Cs2vii46.311 (19)Cs2xi—S1—Cs1171.41 (4)
S3iv—Cs1—Cs2vii160.418 (13)Cs2viii—S1—Cs1103.17 (3)
S3vi—Cs1—Cs2vii99.610 (16)Ge1—S1—Cs1iv96.758 (18)
Ge1—Cs1—Cs2vii82.011 (10)Cs2xi—S1—Cs1iv94.400 (19)
Cs2—Cs1—Cs2vii121.699 (8)Cs2viii—S1—Cs1iv83.865 (18)
S1ii—Cs2—S1viii94.58 (3)Cs1—S1—Cs1iv86.621 (19)
S1ii—Cs2—S2ii64.70 (3)Ge1—S1—Cs1v96.758 (18)
S1viii—Cs2—S2ii159.28 (3)Cs2xi—S1—Cs1v94.400 (19)
S1ii—Cs2—S3iv143.108 (16)Cs2viii—S1—Cs1v83.865 (18)
S1viii—Cs2—S3iv103.40 (2)Cs1—S1—Cs1v86.621 (19)
S2ii—Cs2—S3iv94.23 (2)Cs1iv—S1—Cs1v164.27 (4)
S1ii—Cs2—S3vi143.108 (16)Ge1—S2—Cs1i108.54 (4)
S1viii—Cs2—S3vi103.40 (2)Ge1—S2—Cs2xi83.55 (4)
S2ii—Cs2—S3vi94.23 (2)Cs1i—S2—Cs2xi167.91 (3)
S3iv—Cs2—S3vi62.93 (2)Ge1—S2—Cs1xi162.03 (5)
S1ii—Cs2—S3ix144.695 (16)Cs1i—S2—Cs1xi89.44 (3)
S1viii—Cs2—S3ix70.52 (2)Cs2xi—S2—Cs1xi78.47 (3)
S2ii—Cs2—S3ix126.31 (2)Ge1—S2—Cs2v90.153 (18)
S3iv—Cs2—S3ix32.88 (2)Cs1i—S2—Cs2v82.427 (18)
S3vi—Cs2—S3ix72.19 (2)Cs2xi—S2—Cs2v97.905 (18)
S1ii—Cs2—S3x144.695 (16)Cs1xi—S2—Cs2v92.297 (17)
S1viii—Cs2—S3x70.52 (2)Ge1—S2—Cs2iv90.153 (18)
S2ii—Cs2—S3x126.31 (2)Cs1i—S2—Cs2iv82.427 (18)
S3iv—Cs2—S3x72.19 (2)Cs2xi—S2—Cs2iv97.905 (18)
S3vi—Cs2—S3x32.88 (2)Cs1xi—S2—Cs2iv92.297 (17)
S3ix—Cs2—S3x61.51 (3)Cs2v—S2—Cs2iv164.12 (4)
S1ii—Cs2—S2v85.963 (18)S3xii—S3—Ge1104.43 (3)
S1viii—Cs2—S2v97.128 (18)S3xii—S3—Cs2iv75.55 (4)
S2ii—Cs2—S2v82.095 (18)Ge1—S3—Cs2iv90.16 (3)
S3iv—Cs2—S2v122.55 (2)S3xii—S3—Cs1121.78 (4)
S3vi—Cs2—S2v60.27 (2)Ge1—S3—Cs183.67 (2)
S3ix—Cs2—S2v126.58 (2)Cs2iv—S3—Cs1162.56 (2)
S3x—Cs2—S2v65.35 (2)S3xii—S3—Cs2xiii71.57 (4)
S1ii—Cs2—S2iv85.963 (18)Ge1—S3—Cs2xiii159.35 (3)
S1viii—Cs2—S2iv97.128 (18)Cs2iv—S3—Cs2xiii107.81 (2)
S2ii—Cs2—S2iv82.095 (18)Cs1—S3—Cs2xiii81.758 (18)
S3iv—Cs2—S2iv60.27 (2)S3xii—S3—Cs1iv146.79 (2)
S3vi—Cs2—S2iv122.55 (2)Ge1—S3—Cs1iv94.23 (3)
S3ix—Cs2—S2iv65.35 (2)Cs2iv—S3—Cs1iv77.205 (18)
S3x—Cs2—S2iv126.58 (2)Cs1—S3—Cs1iv86.964 (19)
S2v—Cs2—S2iv164.12 (4)Cs2xiii—S3—Cs1iv99.51 (2)
S1ii—Cs2—Ge1ii32.52 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y1/2, z+1; (vii) x1/2, y1/2, z; (viii) x+1, y, z+1; (ix) x+1/2, y+1/2, z; (x) x+1/2, y1/2, z; (xi) x, y, z+1; (xii) x, y, z+1; (xiii) x1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds