Download citation
Download citation
link to html
A novel Mn(II) one-dimensional coordination polymer with the bridging ligand 4,4′-methyl­enebis(3,5-di­methyl­pyrazole), (H2mbdpz), has been isolated. It is composed of [Mn(C11H16N4)2(SCN)2] units. The crystal structure determination shows that an infinite chain is composed of alternating manganese ions and H2mbdpz ligands. The Mn(II) ion lies on a twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680302021X/bt6345sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680302021X/bt6345Isup2.hkl
Contains datablock I

CCDC reference: 190239

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.043
  • wR factor = 0.103
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... C12 PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) . 1.14 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Dithiocyanatebis(4,4'-methylenebis(3,5-dimethylpyrazole))manganese(II) top
Crystal data top
[Mn(C11H16N4)2(SCN)2]F(000) = 1212
Mr = 579.66Dx = 1.345 Mg m3
Dm = 1.322 Mg m3
Dm measured by not measured
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 713 reflections
a = 21.258 (10) Åθ = 2.4–25.1°
b = 9.723 (4) ŵ = 0.64 mm1
c = 17.253 (7) ÅT = 293 K
β = 126.610 (14)°Prism, pale red
V = 2863 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2899 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.831, Tmax = 0.883k = 1112
7826 measured reflectionsl = 2112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0442P)2 + 1.465P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.03174 (6)0.25000.03331 (18)
N10.41223 (12)0.1957 (2)0.14941 (15)0.0388 (5)
N20.37685 (13)0.1860 (2)0.05253 (15)0.0399 (5)
H2A0.38190.11620.02610.048*
N30.41879 (12)0.8495 (2)0.15236 (15)0.0374 (5)
N40.44367 (13)0.7923 (2)0.10307 (17)0.0441 (6)
H4A0.47860.82920.09950.053*
N50.45750 (14)0.0319 (2)0.34035 (18)0.0464 (6)
S10.34771 (5)0.05688 (10)0.37811 (7)0.0640 (3)
C10.41461 (18)0.3722 (3)0.2558 (2)0.0496 (7)
H1A0.36940.38710.25460.074*
H1B0.44230.45740.26960.074*
H1C0.44840.30610.30490.074*
C20.38921 (14)0.3193 (3)0.15961 (18)0.0347 (6)
C30.33996 (14)0.3862 (2)0.06986 (18)0.0335 (6)
C40.33318 (15)0.2971 (3)0.00271 (19)0.0374 (6)
C50.28921 (18)0.3080 (3)0.1044 (2)0.0536 (8)
H5A0.31890.36230.11870.080*
H5B0.23940.35100.13190.080*
H5C0.28110.21770.13140.080*
C60.30215 (15)0.5250 (3)0.0517 (2)0.0400 (6)
H6A0.27820.52910.08510.048*
H6B0.26060.53380.01690.048*
C70.32470 (18)0.7820 (3)0.1863 (2)0.0536 (8)
H7A0.34470.71940.23930.080*
H7B0.26950.76690.13920.080*
H7C0.33350.87490.20960.080*
C80.36596 (14)0.7584 (3)0.14089 (17)0.0344 (6)
C90.35691 (14)0.6461 (2)0.08333 (18)0.0342 (6)
C100.40827 (17)0.6725 (3)0.0606 (2)0.0415 (7)
C110.4269 (2)0.5967 (3)0.0005 (3)0.0696 (10)
H11A0.46880.64270.00470.104*
H11B0.38130.59460.06550.104*
H11C0.44260.50430.02420.104*
C120.41290 (16)0.0427 (3)0.35846 (19)0.0361 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0385 (3)0.0260 (3)0.0404 (4)0.0000.0263 (3)0.000
N10.0451 (13)0.0308 (13)0.0376 (14)0.0028 (10)0.0232 (11)0.0039 (9)
N20.0480 (13)0.0289 (12)0.0413 (14)0.0004 (10)0.0258 (12)0.0089 (10)
N30.0454 (13)0.0308 (12)0.0427 (14)0.0014 (10)0.0300 (12)0.0038 (10)
N40.0566 (15)0.0357 (14)0.0619 (16)0.0080 (11)0.0472 (13)0.0078 (11)
N50.0555 (14)0.0376 (13)0.0620 (16)0.0014 (12)0.0436 (13)0.0039 (12)
S10.0691 (6)0.0744 (6)0.0776 (6)0.0129 (5)0.0594 (5)0.0087 (5)
C10.0634 (19)0.0390 (17)0.0447 (17)0.0055 (14)0.0313 (16)0.0058 (13)
C20.0364 (14)0.0295 (14)0.0388 (15)0.0028 (11)0.0227 (12)0.0055 (11)
C30.0326 (14)0.0250 (14)0.0408 (16)0.0024 (11)0.0208 (13)0.0035 (11)
C40.0381 (15)0.0327 (15)0.0374 (16)0.0039 (12)0.0203 (13)0.0010 (12)
C50.0596 (19)0.0504 (19)0.0440 (18)0.0028 (15)0.0271 (16)0.0038 (14)
C60.0357 (14)0.0318 (14)0.0467 (17)0.0014 (12)0.0213 (13)0.0007 (13)
C70.0584 (19)0.051 (2)0.067 (2)0.0086 (15)0.0459 (18)0.0153 (15)
C80.0355 (14)0.0318 (14)0.0348 (15)0.0028 (11)0.0203 (12)0.0017 (11)
C90.0375 (14)0.0250 (14)0.0387 (15)0.0043 (11)0.0220 (12)0.0038 (11)
C100.0556 (17)0.0266 (14)0.0526 (18)0.0002 (13)0.0378 (15)0.0056 (12)
C110.099 (3)0.049 (2)0.106 (3)0.0142 (19)0.086 (3)0.0228 (19)
C120.0450 (16)0.0261 (14)0.0408 (15)0.0038 (12)0.0276 (13)0.0028 (11)
Geometric parameters (Å, º) top
Mn1—N52.219 (2)C2—C31.409 (4)
Mn1—N5i2.219 (2)C3—C41.384 (3)
Mn1—N1i2.274 (2)C3—C61.505 (3)
Mn1—N12.274 (2)C4—C51.497 (4)
Mn1—N3ii2.343 (2)C5—H5A0.9600
Mn1—N3iii2.343 (2)C5—H5B0.9600
N1—C21.348 (3)C5—H5C0.9600
N1—N21.367 (3)C6—C91.510 (3)
N2—C41.348 (3)C6—H6A0.9700
N2—H2A0.8600C6—H6B0.9700
N3—C81.349 (3)C7—C81.502 (3)
N3—N41.360 (3)C7—H7A0.9600
N3—Mn1iv2.343 (2)C7—H7B0.9600
N4—C101.343 (3)C7—H7C0.9600
N4—H4A0.8600C8—C91.410 (3)
N5—C121.167 (3)C9—C101.387 (3)
S1—C121.617 (3)C10—C111.504 (4)
C1—C21.497 (4)C11—H11A0.9600
C1—H1A0.9600C11—H11B0.9600
C1—H1B0.9600C11—H11C0.9600
C1—H1C0.9600
N5—Mn1—N5i179.90 (12)C2—C3—C6126.7 (2)
N5—Mn1—N1i87.46 (9)N2—C4—C3106.3 (2)
N5i—Mn1—N1i92.47 (9)N2—C4—C5122.0 (2)
N5—Mn1—N192.47 (9)C3—C4—C5131.8 (2)
N5i—Mn1—N187.46 (9)C4—C5—H5A109.5
N1i—Mn1—N190.99 (11)C4—C5—H5B109.5
N5—Mn1—N3ii94.11 (8)H5A—C5—H5B109.5
N5i—Mn1—N3ii85.97 (8)C4—C5—H5C109.5
N1i—Mn1—N3ii175.01 (8)H5A—C5—H5C109.5
N1—Mn1—N3ii93.67 (8)H5B—C5—H5C109.5
N5—Mn1—N3iii85.97 (8)C3—C6—C9115.0 (2)
N5i—Mn1—N3iii94.11 (8)C3—C6—H6A108.5
N1i—Mn1—N3iii93.67 (8)C9—C6—H6A108.5
N1—Mn1—N3iii175.01 (8)C3—C6—H6B108.5
N3ii—Mn1—N3iii81.73 (11)C9—C6—H6B108.5
C2—N1—N2104.1 (2)H6A—C6—H6B107.5
C2—N1—Mn1136.19 (18)C8—C7—H7A109.5
N2—N1—Mn1119.17 (15)C8—C7—H7B109.5
C4—N2—N1113.1 (2)H7A—C7—H7B109.5
C4—N2—H2A123.5C8—C7—H7C109.5
N1—N2—H2A123.5H7A—C7—H7C109.5
C8—N3—N4103.9 (2)H7B—C7—H7C109.5
C8—N3—Mn1iv142.57 (17)N3—C8—C9111.3 (2)
N4—N3—Mn1iv111.37 (15)N3—C8—C7121.1 (2)
C10—N4—N3113.3 (2)C9—C8—C7127.5 (2)
C10—N4—H4A123.3C10—C9—C8104.9 (2)
N3—N4—H4A123.3C10—C9—C6127.5 (2)
C12—N5—Mn1157.6 (2)C8—C9—C6127.6 (2)
C2—C1—H1A109.5N4—C10—C9106.6 (2)
C2—C1—H1B109.5N4—C10—C11120.6 (2)
H1A—C1—H1B109.5C9—C10—C11132.8 (3)
C2—C1—H1C109.5C10—C11—H11A109.5
H1A—C1—H1C109.5C10—C11—H11B109.5
H1B—C1—H1C109.5H11A—C11—H11B109.5
N1—C2—C3111.0 (2)C10—C11—H11C109.5
N1—C2—C1122.2 (2)H11A—C11—H11C109.5
C3—C2—C1126.9 (2)H11B—C11—H11C109.5
C4—C3—C2105.6 (2)N5—C12—S1177.3 (3)
C4—C3—C6127.7 (2)
N5—Mn1—N1—C248.8 (2)N1—N2—C4—C30.3 (3)
N5i—Mn1—N1—C2131.1 (3)N1—N2—C4—C5179.9 (2)
N1i—Mn1—N1—C238.7 (2)C2—C3—C4—N20.3 (3)
N3ii—Mn1—N1—C2143.1 (2)C6—C3—C4—N2179.6 (2)
N5—Mn1—N1—N2141.24 (18)C2—C3—C4—C5179.9 (3)
N5i—Mn1—N1—N238.83 (18)C6—C3—C4—C50.6 (5)
N1i—Mn1—N1—N2131.3 (2)C4—C3—C6—C9106.6 (3)
N3ii—Mn1—N1—N246.96 (18)C2—C3—C6—C974.3 (3)
C2—N1—N2—C40.1 (3)N4—N3—C8—C91.0 (3)
Mn1—N1—N2—C4172.94 (16)Mn1iv—N3—C8—C9161.1 (2)
C8—N3—N4—C101.1 (3)N4—N3—C8—C7179.0 (2)
Mn1iv—N3—N4—C10168.22 (18)Mn1iv—N3—C8—C718.9 (4)
N1i—Mn1—N5—C12121.9 (5)N3—C8—C9—C100.7 (3)
N1—Mn1—N5—C1231.0 (5)C7—C8—C9—C10179.4 (3)
N3ii—Mn1—N5—C1262.8 (5)N3—C8—C9—C6178.2 (2)
N3iii—Mn1—N5—C12144.2 (5)C7—C8—C9—C61.7 (4)
N2—N1—C2—C30.1 (3)C3—C6—C9—C1051.7 (4)
Mn1—N1—C2—C3170.84 (18)C3—C6—C9—C8129.7 (3)
N2—N1—C2—C1179.8 (2)N3—N4—C10—C90.7 (3)
Mn1—N1—C2—C19.3 (4)N3—N4—C10—C11178.2 (3)
N1—C2—C3—C40.2 (3)C8—C9—C10—N40.0 (3)
C1—C2—C3—C4179.6 (3)C6—C9—C10—N4178.9 (2)
N1—C2—C3—C6179.5 (2)C8—C9—C10—C11178.7 (3)
C1—C2—C3—C60.3 (4)C6—C9—C10—C110.2 (5)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z; (iii) x+1, y1, z+1/2; (iv) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds