Download citation
Download citation
link to html
The title compound, C13H15N3O2, (I), crystallizes in the monoclinic space group P21/m. The phthal­imide rings lie in crystallographic mirror planes. Molecules are associated into columns parallel to the b-axis direction, and linked together along the a-axis direction by a two-dimensional network of hydrogen bonds involving C—H...O interactions. The molecular packing in the crystal is stabilized by the weak intermolecular C—H...O hydrogen bonds and van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804001825/ac6078sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804001825/ac6078Isup2.hkl
Contains datablock I

CCDC reference: 234921

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.114
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SMART; data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

N-(4-methyl-1-piperazinyl)phthalimide top
Crystal data top
C13H15N3O2F(000) = 260
Mr = 245.28Dx = 1.331 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 853 reflections
a = 8.364 (3) Åθ = 2.8–26.4°
b = 6.816 (3) ŵ = 0.09 mm1
c = 10.972 (5) ÅT = 293 K
β = 101.980 (6)°Prism, colorless
V = 611.9 (4) Å30.24 × 0.22 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1372 independent reflections
Radiation source: fine-focus sealed tube1064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.976, Tmax = 0.985k = 88
3540 measured reflectionsl = 813
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.071P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1372 reflectionsΔρmax = 0.22 e Å3
112 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.30 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09160 (17)0.25000.53563 (13)0.0658 (5)
O20.33863 (19)0.25000.20035 (13)0.0656 (5)
N10.17519 (19)0.25000.34678 (14)0.0454 (4)
N20.01766 (19)0.25000.26989 (15)0.0459 (4)
N30.2218 (2)0.25000.04513 (14)0.0498 (5)
C10.1975 (2)0.25000.47739 (17)0.0430 (5)
C20.3774 (2)0.25000.52412 (17)0.0387 (4)
C30.4669 (2)0.25000.64501 (18)0.0447 (5)
H30.41580.25000.71260.052 (6)*
C40.6360 (2)0.25000.6615 (2)0.0481 (5)
H40.69970.25000.74180.050 (6)*
C50.7113 (2)0.25000.5608 (2)0.0502 (5)
H50.82480.25000.57440.068 (7)*
C60.6206 (2)0.25000.4402 (2)0.0494 (5)
H60.67170.25000.37250.052 (6)*
C70.4526 (2)0.25000.42321 (17)0.0408 (4)
C80.3241 (2)0.25000.30737 (18)0.0460 (5)
C90.01328 (18)0.0716 (2)0.19382 (14)0.0547 (4)
H9A0.00510.04350.24690.066 (5)*
H9B0.06040.06570.13630.071 (5)*
C100.18826 (17)0.0754 (2)0.12258 (13)0.0537 (4)
H10A0.20940.04040.07040.066 (5)*
H10B0.26100.07220.18080.061 (4)*
C130.3922 (3)0.25000.0222 (2)0.0652 (7)
H13A0.41270.36500.07360.098*
H13B0.46290.25000.03640.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0380 (8)0.1100 (14)0.0508 (9)0.0000.0128 (6)0.000
O20.0651 (10)0.0911 (12)0.0430 (8)0.0000.0169 (7)0.000
N10.0370 (8)0.0560 (10)0.0410 (9)0.0000.0034 (6)0.000
N20.0413 (9)0.0487 (9)0.0419 (8)0.0000.0047 (7)0.000
N30.0461 (9)0.0637 (11)0.0365 (8)0.0000.0010 (7)0.000
C10.0373 (10)0.0501 (11)0.0408 (10)0.0000.0064 (8)0.000
C20.0348 (9)0.0368 (9)0.0439 (10)0.0000.0069 (7)0.000
C30.0399 (10)0.0487 (11)0.0440 (10)0.0000.0055 (8)0.000
C40.0385 (10)0.0460 (11)0.0546 (12)0.0000.0023 (9)0.000
C50.0316 (9)0.0453 (11)0.0722 (14)0.0000.0075 (9)0.000
C60.0443 (11)0.0484 (11)0.0598 (12)0.0000.0210 (9)0.000
C70.0404 (10)0.0367 (9)0.0463 (10)0.0000.0110 (8)0.000
C80.0473 (11)0.0475 (11)0.0446 (10)0.0000.0129 (8)0.000
C90.0558 (9)0.0478 (9)0.0548 (9)0.0010 (6)0.0021 (7)0.0021 (7)
C100.0545 (9)0.0551 (9)0.0469 (8)0.0060 (7)0.0003 (6)0.0043 (7)
C130.0515 (13)0.0928 (18)0.0454 (11)0.0000.0033 (10)0.000
Geometric parameters (Å, º) top
O1—C11.195 (2)C4—C51.381 (3)
O2—C81.205 (2)C4—H40.9300
N1—C81.401 (2)C5—C61.382 (3)
N1—C11.406 (2)C5—H50.9300
N1—N21.409 (2)C6—C71.379 (3)
N2—C9i1.4672 (17)C6—H60.9299
N2—C91.4672 (17)C7—C81.484 (3)
N3—C10i1.4554 (18)C9—C101.5095 (19)
N3—C101.4554 (18)C9—H9A0.9699
N3—C131.463 (3)C9—H9B0.9700
C1—C21.486 (2)C10—H10A0.9699
C2—C31.381 (3)C10—H10B0.9699
C2—C71.382 (3)C13—H13A0.9599
C3—C41.388 (3)C13—H13B0.9600
C3—H30.9300
C8—N1—C1112.11 (15)C7—C6—C5118.08 (19)
C8—N1—N2126.59 (16)C7—C6—H6121.1
C1—N1—N2121.30 (15)C5—C6—H6120.9
N1—N2—C9i111.91 (9)C6—C7—C2120.80 (18)
N1—N2—C9111.91 (9)C6—C7—C8130.69 (18)
C9i—N2—C9111.96 (16)C2—C7—C8108.52 (16)
C10i—N3—C10109.71 (15)O2—C8—N1125.20 (19)
C10i—N3—C13110.14 (10)O2—C8—C7129.28 (18)
C10—N3—C13110.14 (10)N1—C8—C7105.52 (16)
O1—C1—N1126.09 (17)N2—C9—C10108.53 (12)
O1—C1—C2128.73 (18)N2—C9—H9A110.0
N1—C1—C2105.18 (15)C10—C9—H9A109.9
C3—C2—C7121.57 (17)N2—C9—H9B110.1
C3—C2—C1129.76 (17)C10—C9—H9B110.0
C7—C2—C1108.67 (16)H9A—C9—H9B108.3
C2—C3—C4117.37 (18)N3—C10—C9111.41 (13)
C2—C3—H3121.2N3—C10—H10A109.3
C4—C3—H3121.4C9—C10—H10A109.3
C5—C4—C3121.15 (19)N3—C10—H10B109.4
C5—C4—H4119.4C9—C10—H10B109.4
C3—C4—H4119.4H10A—C10—H10B108.0
C4—C5—C6121.04 (18)N3—C13—H13A109.5
C4—C5—H5119.5N3—C13—H13B109.5
C6—C5—H5119.5H13A—C13—H13B109.5
C8—N1—N2—C9i63.29 (11)C5—C6—C7—C8180.0
C1—N1—N2—C9i116.71 (11)C3—C2—C7—C60.0
C8—N1—N2—C963.29 (11)C1—C2—C7—C6180.0
C1—N1—N2—C9116.71 (11)C3—C2—C7—C8180.0
C8—N1—C1—O1180.0C1—C2—C7—C80.0
N2—N1—C1—O10.0C1—N1—C8—O2180.0
C8—N1—C1—C20.0N2—N1—C8—O20.0
N2—N1—C1—C2180.0C1—N1—C8—C70.0
O1—C1—C2—C30.0N2—N1—C8—C7180.0
N1—C1—C2—C3180.0C6—C7—C8—O20.0
O1—C1—C2—C7180.0C2—C7—C8—O2180.0
N1—C1—C2—C70.0C6—C7—C8—N1180.0
C7—C2—C3—C40.0C2—C7—C8—N10.0
C1—C2—C3—C4180.0N1—N2—C9—C10175.38 (12)
C2—C3—C4—C50.0C9i—N2—C9—C1058.1 (2)
C3—C4—C5—C60.0C10i—N3—C10—C958.3 (2)
C4—C5—C6—C70.0C13—N3—C10—C9179.75 (14)
C5—C6—C7—C20.0N2—C9—C10—N357.70 (17)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.363.249 (3)161
C5—H5···O1iii0.932.363.249 (3)161
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds