organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A 1:1 molecular complex of 4-amino­cyclo­hexanol and (4-hy­droxy­cyclo­hexyl)­carbamic acid

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and bDepartment of Chemistry, University of Durham, Durham DH1 3LE, England
*Correspondence e-mail: desiraju@uohyd.ernet.in

(Received 9 March 2004; accepted 16 April 2004; online 24 April 2004)

The title molecular complex, 4-ammonio­cyclo­hexanol (4-hydroxy­cyclo­hexyl)­carbamate, C6H14NO+·C7H12NO3, forms an ionic column with N—H⋯O, O—H⋯O and C—H⋯O interactions. There are two different cyclic supramol­ecular synthons of note. The crystal structures of ionic amino acids also have similar structural patterns.

Comment

The title molecular complex, (I[link]), was obtained during a study of 4-amino­cyclo­hexanol. This type of compound has a tendency to form carbonated adducts by reaction with atmos­pheric CO2. In this regard, the crystal structure of 2-amino­cyclo­hexyl­carbamate has been reported (Hanessian et al., 1995[Hanessian, S., Simard, M. & Roelens, S. (1995). J. Am. Chem. Soc. 117, 7630-7645.]). In our case, 4-hydroxy­cyclo­hexyl­carbamic acid initially formed, then crystallized with the original 4-amino­cyclo­hexanol to give a 1:1 ionic molecular complex with proton transfer.[link]

[Scheme 1]

The molecular structure and atom numbering are given in Fig. 1[link]. The main features are similar to those in the molecular complex of methyl 3-acetoxy-1-ammonio-4-iodo­cyclo­hexane-1-carboxyl­ate and tri­fluoro­acetate (Avenoza et al., 1997[Avenoza, A., Cativiela, C., Fernandez-Recio, M. A. & Peregrina, J. M. (1997). Synthesis, pp. 165-167.]) and similar to 2-amino­cyclo­hexyl­carbamate (Hanessian et al., 1995[Hanessian, S., Simard, M. & Roelens, S. (1995). J. Am. Chem. Soc. 117, 7630-7645.]). The ions form a columnar arrangement with several N—H⋯O interactions (Table 1[link]); the packing is shown in Fig. 2[link]. Weak C—H⋯O interactions (Table 1[link]) reinforce the column formation. A closer view of the columnar packing shows that it is composed of two cyclic supramolecular synthons A and B (Fig. 3[link]). Both types of synthon are observed in other ionic amino acids. In the Cambridge Structural Database (Version 5.24, July 2003; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), the crystal structures with refcodes ACXTPY (Bhattacharjee et al., 1975[Bhattacharjee, S. K., Chacko, K. K. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 403-411.]), ACYHXA01 (Valle et al., 1988[Valle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P., (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393-398.]), DMTYRS (Gaudestad et al., 1976[Gaudestad, O., Mostad, A. & Romming, C. (1976). Acta Chem. Scand. Ser. B, 30, 501-504.]), FOBJUB (Pirrung, 1987[Pirrung, M. C. (1987). J. Org. Chem. 52, 4179-4184.]), MEMTYR10 (Satyshur & Rao, 1983[Satyshur, K. A. & Rao, S. T. (1983). Acta Cryst. C39, 1672-1673.]) RIGSEF (Avenoza et al., 1997[Avenoza, A., Cativiela, C., Fernandez-Recio, M. A. & Peregrina, J. M. (1997). Synthesis, pp. 165-167.]) and TOKNUC (Allan et al., 1996[Allan, R. D., Duke, R. K., Hambley, T. W., Johnston, G. A. R., Mewett, K. N., Quickert, N. & Tran, H. W. (1996). Aust. J. Chem. 49, 785-790.]) contain synthons A and B.

O—H⋯O(carboxyl­ate) and O—H⋯O(hydroxyl) hydrogen bonds act as connectors between the columns.

[Figure 1]
Figure 1
A view of the molecular structure of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
Stereoview of the columnar packing, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Segment of the crystal structure, showing synthons A and B.

Experimental

Neutralization of the commercially available (Lancaster) hydro­chloride salt of 4-amino­cyclo­hexanol by NaHCO3 in water affords the 4-amino­cyclo­hexanol (extracted with EtOAc). The compound crystallized from a 1:1:1 mixture of EtOAc, CH3CN and EtOH. During the time of crystallization, 4-amino­cyclo­hexanol is carboxyl­ated by atmospheric CO2 to give the carbamic acid which cocrystallizes with the parent compound to give yellow crystals of the 1:1 molecular complex.

Crystal data
  • C6H14NO+·C7H12NO3

  • Mr = 274.36

  • Monoclinic, P21/c

  • a = 6.3452 (2) Å

  • b = 18.6256 (6) Å

  • c = 12.1664 (4) Å

  • β = 92.284 (2)°

  • V = 1436.72 (8) Å3

  • Z = 4

  • Dx = 1.268 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4934 reflections

  • θ = 2.8–27.5°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.22 × 0.12 × 0.04 mm

Data collection
  • SMART 6K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001) SHELXTL (Version 6.12) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 1.000

  • 19783 measured reflections

  • 3308 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.5°

  • h = −7 → 8

  • k = −24 → 24

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.01

  • 3308 reflections

  • 276 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3252P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1′—H1′⋯O1 0.90 (2) 1.88 (2) 2.784 (2) 176 (1)
O1—H1⋯O3i 0.90 (2) 1.79 (2) 2.687 (1) 175 (2)
N1′—H111⋯O2ii 0.94 (2) 1.90 (2) 2.816 (1) 167 (1)
N1′—H112⋯O3iii 0.95 (2) 1.82 (2) 2.7590 (1) 170 (1)
N1′—H114⋯O2iv 0.92 (2) 1.87 (2) 2.7870 (1) 169 (1)
C6′—H6D⋯O3ii 0.96 (2) 2.54 (1) 3.417 (1) 152 (1)
Symmetry codes: (i) [1+x,{\script{3\over 2}}-y,{\script{1\over 2}}+z]; (ii) 1+x,y,1+z; (iii) -x,1-y,1-z; (iv) 1-x,1-y,1-z.

Data collection: SMART (Bruker, 1997[Bruker (1997) SMART (Version 5.054) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997) SMART (Version 5.054) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001) SHELXTL (Version 6.12) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

4-ammoniocyclohexanol–(4-hydroxycyclohexyl)carbamate (1/1) top
Crystal data top
C6H14NO+·C7H12NO3F(000) = 600
Mr = 274.36Dx = 1.268 Mg m3
Monoclinic, P21/cMelting point: 377 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.3452 (2) ÅCell parameters from 4934 reflections
b = 18.6256 (6) Åθ = 2.8–27.5°
c = 12.1664 (4) ŵ = 0.09 mm1
β = 92.284 (2)°T = 120 K
V = 1436.72 (8) Å3Plate, yellow
Z = 40.22 × 0.12 × 0.04 mm
Data collection top
SMART 6k CCD area-detector
diffractometer
3308 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 2424
Tmin = 0.927, Tmax = 1.000l = 1515
19783 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
3308 reflections(Δ/σ)max = 0.001
276 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.46270 (13)0.63687 (5)0.01886 (7)0.0216 (2)
O20.15113 (14)0.58448 (5)0.05544 (7)0.0223 (2)
O10.35337 (16)0.73442 (5)0.48724 (8)0.0300 (2)
N1'0.74068 (18)0.46768 (6)0.91750 (8)0.0182 (2)
O1'0.56745 (17)0.60426 (6)0.50683 (8)0.0303 (2)
N10.21577 (18)0.69590 (6)0.12248 (9)0.0227 (2)
C70.27812 (19)0.63633 (6)0.06402 (9)0.0172 (2)
C10.0410 (2)0.69605 (7)0.20400 (10)0.0197 (3)
C1'0.68231 (19)0.48446 (7)0.79946 (10)0.0182 (3)
C40.1752 (2)0.74117 (7)0.41197 (10)0.0220 (3)
C50.2403 (2)0.76883 (8)0.30124 (11)0.0290 (3)
C5'0.4282 (2)0.54960 (7)0.67150 (10)0.0217 (3)
C4'0.6106 (2)0.58854 (7)0.61997 (10)0.0229 (3)
C6'0.4831 (2)0.52980 (7)0.79140 (10)0.0206 (3)
C3'0.8078 (2)0.54205 (8)0.62791 (12)0.0291 (3)
C60.0536 (3)0.77048 (8)0.21763 (12)0.0298 (3)
C2'0.8658 (2)0.52213 (8)0.74691 (12)0.0266 (3)
C30.0736 (3)0.66789 (8)0.39996 (12)0.0321 (3)
C20.1096 (2)0.66843 (9)0.31494 (12)0.0310 (3)
H1A0.066 (2)0.6656 (8)0.1757 (12)0.020 (3)*
H1B0.658 (2)0.4379 (7)0.7637 (11)0.015 (3)*
H2D0.893 (2)0.5668 (9)0.7913 (13)0.028 (4)*
H6D0.506 (2)0.5722 (8)0.8348 (12)0.021 (4)*
H4'0.636 (2)0.6353 (8)0.6590 (12)0.021 (4)*
H5D0.400 (2)0.5061 (8)0.6273 (12)0.020 (4)*
H40.073 (3)0.7753 (9)0.4436 (13)0.030 (4)*
H3D0.925 (3)0.5664 (9)0.5937 (14)0.033 (4)*
H5C0.307 (3)0.5814 (9)0.6675 (13)0.030 (4)*
H1150.315 (3)0.7273 (10)0.1311 (14)0.038 (5)*
H1140.870 (3)0.4447 (9)0.9227 (13)0.031 (4)*
H2A0.221 (3)0.7018 (11)0.3403 (15)0.047 (5)*
H1120.641 (3)0.4352 (9)0.9465 (14)0.038 (5)*
H1110.756 (2)0.5090 (9)0.9608 (13)0.027 (4)*
H6C0.370 (2)0.5034 (8)0.8226 (12)0.021 (4)*
H5A0.352 (3)0.7351 (10)0.2737 (15)0.042 (5)*
H1'0.498 (3)0.6467 (10)0.5041 (15)0.042 (5)*
H3C0.776 (3)0.4966 (11)0.5837 (15)0.045 (5)*
H2C0.988 (3)0.4894 (9)0.7499 (13)0.036 (4)*
H3A0.188 (3)0.6337 (10)0.3776 (14)0.042 (5)*
H6B0.058 (3)0.8024 (10)0.2441 (14)0.035 (4)*
H2B0.171 (3)0.6200 (10)0.3086 (14)0.039 (5)*
H6A0.095 (3)0.7889 (10)0.1460 (16)0.047 (5)*
H3B0.026 (3)0.6536 (11)0.4732 (17)0.053 (5)*
H10.419 (3)0.7770 (11)0.4939 (16)0.049 (5)*
H5B0.305 (3)0.8174 (10)0.3088 (14)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0175 (5)0.0204 (4)0.0262 (5)0.0009 (3)0.0078 (3)0.0008 (3)
O20.0191 (5)0.0202 (4)0.0270 (5)0.0026 (3)0.0060 (4)0.0046 (3)
O10.0349 (6)0.0212 (5)0.0322 (5)0.0039 (4)0.0202 (4)0.0027 (4)
N1'0.0167 (5)0.0184 (5)0.0191 (5)0.0002 (4)0.0026 (4)0.0002 (4)
O1'0.0362 (6)0.0308 (5)0.0235 (5)0.0065 (4)0.0022 (4)0.0075 (4)
N10.0207 (6)0.0201 (5)0.0264 (6)0.0044 (4)0.0096 (4)0.0048 (4)
C70.0183 (6)0.0169 (6)0.0161 (5)0.0012 (4)0.0022 (4)0.0021 (4)
C10.0179 (6)0.0203 (6)0.0202 (6)0.0010 (5)0.0064 (5)0.0024 (5)
C1'0.0176 (6)0.0193 (6)0.0176 (6)0.0000 (5)0.0024 (4)0.0007 (4)
C40.0230 (7)0.0213 (6)0.0211 (6)0.0002 (5)0.0085 (5)0.0019 (5)
C50.0296 (8)0.0294 (7)0.0272 (7)0.0137 (6)0.0101 (6)0.0048 (5)
C5'0.0187 (6)0.0248 (6)0.0211 (6)0.0023 (5)0.0047 (5)0.0005 (5)
C4'0.0239 (7)0.0218 (6)0.0227 (6)0.0006 (5)0.0041 (5)0.0039 (5)
C6'0.0163 (6)0.0257 (6)0.0196 (6)0.0022 (5)0.0026 (5)0.0002 (5)
C3'0.0218 (7)0.0360 (8)0.0297 (7)0.0044 (6)0.0044 (6)0.0145 (6)
C60.0380 (8)0.0245 (7)0.0258 (7)0.0089 (6)0.0134 (6)0.0050 (5)
C2'0.0159 (6)0.0324 (7)0.0311 (7)0.0008 (5)0.0021 (5)0.0113 (6)
C30.0432 (9)0.0297 (7)0.0223 (7)0.0158 (7)0.0113 (6)0.0072 (6)
C20.0318 (8)0.0352 (8)0.0253 (7)0.0162 (6)0.0065 (6)0.0024 (6)
Geometric parameters (Å, º) top
O3—C71.2737 (14)C5—H5A1.016 (19)
O2—C71.2647 (15)C5—H5B0.996 (19)
O1—C41.4316 (15)C5'—C4'1.5224 (19)
O1—H10.90 (2)C5'—C6'1.5314 (17)
N1'—C1'1.5016 (15)C5'—H5D0.984 (15)
N1'—H1140.924 (18)C5'—H5C0.971 (17)
N1'—H1120.953 (18)C4'—C3'1.5215 (19)
N1'—H1110.937 (17)C4'—H4'1.002 (15)
O1'—C4'1.4231 (15)C6'—H6D0.959 (15)
O1'—H1'0.905 (19)C6'—H6C0.961 (16)
N1—C71.3679 (15)C3'—C2'1.5253 (19)
N1—C11.4578 (15)C3'—H3D0.980 (18)
N1—H1150.869 (19)C3'—H3C1.019 (19)
C1—C61.5170 (18)C6—H6B0.990 (18)
C1—C21.5240 (19)C6—H6A0.982 (19)
C1—H1A0.958 (15)C2'—H2D1.003 (16)
C1'—C6'1.5198 (17)C2'—H2C0.984 (18)
C1'—C2'1.5216 (18)C3—C21.5249 (19)
C1'—H1B0.979 (14)C3—H3A1.011 (19)
C4—C31.5141 (18)C3—H3B0.99 (2)
C4—C51.5151 (19)C2—H2A1.00 (2)
C4—H40.996 (16)C2—H2B0.983 (18)
C5—C61.5310 (19)
C4—O1—H1109.3 (12)H5D—C5'—H5C110.4 (13)
C1'—N1'—H114110.2 (10)O1'—C4'—C3'107.74 (11)
C1'—N1'—H112110.1 (10)O1'—C4'—C5'112.09 (11)
H114—N1'—H112106.3 (14)C3'—C4'—C5'109.85 (11)
C1'—N1'—H111112.6 (9)O1'—C4'—H4'107.5 (8)
H114—N1'—H111105.6 (14)C3'—C4'—H4'110.5 (8)
H112—N1'—H111111.7 (14)C5'—C4'—H4'109.1 (8)
C4'—O1'—H1'106.9 (12)C1'—C6'—C5'110.64 (10)
C7—N1—C1123.48 (11)C1'—C6'—H6D108.3 (9)
C7—N1—H115114.4 (12)C5'—C6'—H6D110.5 (9)
C1—N1—H115116.9 (12)C1'—C6'—H6C108.8 (9)
O2—C7—O3123.25 (11)C5'—C6'—H6C110.8 (9)
O2—C7—N1119.36 (11)H6D—C6'—H6C107.7 (12)
O3—C7—N1117.38 (11)C4'—C3'—C2'111.42 (12)
N1—C1—C6111.28 (10)C4'—C3'—H3D110.3 (10)
N1—C1—C2111.45 (11)C2'—C3'—H3D110.9 (10)
C6—C1—C2109.71 (11)C4'—C3'—H3C107.1 (11)
N1—C1—H1A106.5 (8)C2'—C3'—H3C109.5 (10)
C6—C1—H1A107.3 (9)H3D—C3'—H3C107.4 (14)
C2—C1—H1A110.5 (9)C1—C6—C5110.28 (11)
N1'—C1'—C6'110.50 (10)C1—C6—H6B107.4 (10)
N1'—C1'—C2'109.52 (10)C5—C6—H6B110.0 (10)
C6'—C1'—C2'111.39 (10)C1—C6—H6A110.0 (11)
N1'—C1'—H1B105.6 (8)C5—C6—H6A111.6 (11)
C6'—C1'—H1B110.2 (8)H6B—C6—H6A107.4 (15)
C2'—C1'—H1B109.4 (8)C1'—C2'—C3'110.58 (11)
O1—C4—C3107.75 (10)C1'—C2'—H2D106.0 (9)
O1—C4—C5111.25 (11)C3'—C2'—H2D109.9 (9)
C3—C4—C5110.54 (11)C1'—C2'—H2C108.2 (10)
O1—C4—H4108.5 (9)C3'—C2'—H2C110.2 (10)
C3—C4—H4109.3 (9)H2D—C2'—H2C111.9 (13)
C5—C4—H4109.4 (9)C4—C3—C2111.69 (12)
C4—C5—C6111.49 (12)C4—C3—H3A106.7 (10)
C4—C5—H5A107.6 (10)C2—C3—H3A111.0 (10)
C6—C5—H5A109.1 (10)C4—C3—H3B107.4 (12)
C4—C5—H5B110.7 (10)C2—C3—H3B111.2 (12)
C6—C5—H5B110.5 (10)H3A—C3—H3B108.7 (15)
H5A—C5—H5B107.4 (14)C1—C2—C3111.49 (12)
C4'—C5'—C6'111.03 (10)C1—C2—H2A107.1 (11)
C4'—C5'—H5D107.0 (8)C3—C2—H2A109.0 (11)
C6'—C5'—H5D110.6 (8)C1—C2—H2B111.4 (10)
C4'—C5'—H5C107.6 (9)C3—C2—H2B109.5 (10)
C6'—C5'—H5C110.2 (9)H2A—C2—H2B108.2 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O10.90 (2)1.88 (2)2.784 (2)176 (1)
O1—H1···O3i0.90 (2)1.79 (2)2.687 (1)175 (2)
N1—H111···O2ii0.94 (2)1.90 (2)2.816 (1)167 (1)
N1—H112···O3iii0.95 (2)1.82 (2)2.7590 (1)170 (1)
N1—H114···O2iv0.92 (2)1.87 (2)2.7870 (1)169 (1)
C6—H6D···O3ii0.96 (2)2.54 (1)3.417 (1)152 (1)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

AD thanks the CSIR for fellowship support. RM thanks the ORS for support. JAKH thanks the EPSRC for a Senior Research Fellowship. GRD thanks DST for financial assistance.

References

First citationAllan, R. D., Duke, R. K., Hambley, T. W., Johnston, G. A. R., Mewett, K. N., Quickert, N. & Tran, H. W. (1996). Aust. J. Chem. 49, 785–790.  CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAvenoza, A., Cativiela, C., Fernandez-Recio, M. A. & Peregrina, J. M. (1997). Synthesis, pp. 165–167.  CSD CrossRef Google Scholar
First citationBhattacharjee, S. K., Chacko, K. K. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 403–411.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997) SMART (Version 5.054) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001) SHELXTL (Version 6.12) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaudestad, O., Mostad, A. & Romming, C. (1976). Acta Chem. Scand. Ser. B, 30, 501–504.  CrossRef Web of Science Google Scholar
First citationHanessian, S., Simard, M. & Roelens, S. (1995). J. Am. Chem. Soc. 117, 7630–7645.  CSD CrossRef CAS Web of Science Google Scholar
First citationPirrung, M. C. (1987). J. Org. Chem. 52, 4179–4184.  CSD CrossRef CAS Web of Science Google Scholar
First citationSatyshur, K. A. & Rao, S. T. (1983). Acta Cryst. C39, 1672–1673.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationValle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P., (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393–398.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds