organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10,13-Bis(p-tolyl­sulfonyl)-1,4,7-tri­thia-10,13-di­aza­cyclo­penta­decane

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and bDipartimento di Chimica, Inorganica ed Analitica, Complesso Universitario di Monserrato, SS 554, Bivio per Sestu, 09042 Monserrato-Cagliari, Italy
*Correspondence e-mail: a.j.blake@nottingham.ac.uk

(Received 8 March 2004; accepted 19 April 2004; online 30 April 2004)

The title compound, C24H34N2O4S5, is the di­tosyl­ated precursor to the mixed aza–thia macrocycle 1,4,7-tri­thia-10,13-di­aza­cyclo­penta­decane ([15]­aneN2S3) and is prepared by reacting bis(2-mercaptoethyl) sulfide with O,O′,N,N′-tetra­tosyl-N,N′-bis(2-oxy­ethyl)­ethyl­endi­amine in di­methyl­form­amide in the presence of Cs2CO3. Molecules lie across crystallographic twofold axes. The macrocyclic framework adopts a [33333] conformation and the two tolyl­sulfonyl groups are directed away from the ring cavity. There is extensive disorder of the methyl­ene groups of the macrocyclic backbone.

Comment

Recently, aza–thio­ether macrocycles have been effectively used for the design and synthesis of selective heteroditopic receptors capable of binding both cationic and anionic moieties of a metal salt (Love et al., 2001[Love, J. B., Vere, J. M., Glenny, M. W., Blake, A. J. & Schröder, M. (2001). Chem. Commun. pp. 2678-2679.]; Glenny et al., 2003[Glenny, M. W., Blake, A. J., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 1941-1951.]). The synthetic routes to aza–thio­ether macrocycles generally involve tosyl­ated ring precursors, the only drawback to which is the de­tosyl­ation procedure which may require long reaction times and generally gives low yields. For the synthesis of [15]­aneN2S3 we prepared the title compound, (I[link]), following a well established cyclization procedure under high dilution conditions. Unfortunately, all attempts to de­tosyl­ate (I[link]) failed to afford the deprotected macrocycle.[link]

[Scheme 1]

Molecules of (I[link]) lie across crystallographic twofold axes (Fig. 1[link]), with the axes passing through S7 and the mid-point of the C15—C15i bond [symmetry code: (i) y, x, −z]. The macrocyclic framework exhibits a [33333] conformation (Fig. 2[link]) and the two tolyl­sulfonyl groups are directed away from the ring cavity. The C atoms of the N—C—C—S and S—C—C—S linkages are each disordered over two sites, with group occupancies of 0.705 (12) and 0.295 (12) for the major and minor components, respectively.

[Figure 1]
Figure 1
A view of the structure of (I[link]), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The minor disorder component has been omitted for clarity. [Symmetry code: (i) y, x, −z.]
[Figure 2]
Figure 2
An alternative view showing the [33333] ring conformation. Ellipsoids are drawn at the 30% probability level and the minor disorder component has been omitted for clarity. [Symmetry code: (i) y, x, −z.]

Experimental

A 5 l three-necked flask fitted with a precision dropping funnel and a mechanical stirrer was purged with nitro­gen. Freshly distilled di­methyl­form­amide (DMF; 1.8 l) and dry Cs2CO3 (11.0 g, 0.0338 mol) were added and the solution was heated to 333 K. A solution of bis(2-mercaptoethyl) sulfide (2.61 g, 0.0169 mol) and O,O′,N,N′-tetra­tosyl-N,N′-bis(2-oxy­ethyl)­ethyl­endi­amine (12.93 g, 0.0169 mol) in DMF (250 ml) was then added dropwise over a period of 12 h. After the addition was complete, a second portion of Cs2CO3 (11.0 g, 0.0338 mol) was added and an identical solution as before was added over a further 12 h period. Once all the reagents had been added, the reaction mixture was stirred for 6 h at 333 K. The DMF was then removed in vacuo and the residue was dissolved in CH2Cl2, washed with water and concentrated in vacuo. The residue was crystallized from hot ethanol to give a white solid of the desired product (9.45 g, 48.6% yield). Crystals suitable for X-ray diffraction analysis were grown by diffusion of Et2O vapour into a CH2Cl2 solution of the product. Elemental analysis, found (calculated for C24H34N2O4S5): C 49.95 (50.15), H 5.88 (5.96), N 4.77 (4.87)%.

Crystal data
  • C24H34N2O4S5

  • Mr = 574.83

  • Tetragonal, P41212

  • a = 12.377 (3) Å

  • c = 18.296 (1) Å

  • V = 2802.8 (10) Å3

  • Z = 4

  • Dx = 1.362 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 35 reflections

  • θ = 10.1–14.9°

  • μ = 0.45 mm−1

  • T = 220 (2) K

  • Column, colourless

  • 0.50 × 0.39 × 0.20 mm

Data collection
  • Stoe STADI-4 four-circle diffractometer

  • ω scans

  • Absorption correction: none

  • 3449 measured reflections

  • 1491 independent reflections

  • 911 reflections with I > 2σ(I)

  • Rint = 0.115

  • θmax = 25.1°

  • h = −9 → 14

  • k = 0 → 14

  • l = 0 → 21

  • 3 standard reflections frequency: 60 min intensity variation: ±3.7%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.149

  • S = 1.11

  • 1491 reflections

  • 178 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.017P)2 + 7.15P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.018

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 997 Friedel pairs

  • Flack parameter = 0.0 (3)

The C atoms of the N—C—C—S and S—C—C—S linkages are each disordered over two sites. This was modelled in terms of two orientations for each linkage and restraints were applied to the relevant C—C, C—N and C—S distances. The occupancies of the two components (C2/C3/C5/C6 and C2′/C3′/C5′/C6′) converged at 0.705 (12) and 0.295 (12), respectively. Our decision to refine a single parameter to describe the disorder of C2/C3 and C5/C6 was based on two observations. The first was that independent refinement of the occupancies of the two di­methyl­ene links gave very similar values. The second is that the angles at the central S atom are both more consistent and typical (104.0 and 104.8°) when the major and minor components are not mixed, but less so (87.7 and 99.0°) with major/minor and minor/major combinations. For these reasons, we believe that the disorder of the two —CH2–CH2– units is a concerted phenomenon.

Methyl H atoms were located in ΔF syntheses and refined as part of rigid rotating groups, with Uiso(H) = 1.5Ueq(C). Other H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). C—H distances of 0.94, 0.97 and 0.98 Å were used for aryl, methyl and methyl­ene H atoms, respectively. Rigid-bond restraints were applied to the anisotropic displacement parameters. With a value of 0.0 (3), the Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter was not reliably determined.

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

(I) top
Crystal data top
C24H34N2O4S5Dx = 1.362 Mg m3
Mr = 574.83Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 35 reflections
a = 12.377 (3) Åθ = 10.1–14.9°
c = 18.296 (1) ŵ = 0.45 mm1
V = 2802.8 (10) Å3T = 220 K
Z = 4Column, colourless
F(000) = 12160.50 × 0.39 × 0.20 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
Rint = 0.115
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.6°
Graphite monochromatorh = 914
ω scansk = 014
3449 measured reflectionsl = 021
1491 independent reflections3 standard reflections every 60 min
911 reflections with I > 2σ(I) intensity decay: 7.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.017P)2 + 7.15P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.018
1491 reflectionsΔρmax = 0.26 e Å3
178 parametersΔρmin = 0.20 e Å3
55 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Model file used for SHELXL97 refinement:

TITL N2S3TS #433 for VL/MS in P 41 21 2 CELL 0.71073 12.3770 12.3770 18.2960 90.000 90.000 90.000 ZERR 4.00 0.003 0.003 0.0010 0.000 0.000 0.000 L A T T -1 SYMM –X, –Y, 0.5+Z SYMM 0.5-Y, 0.5+X, 0.25+Z SYMM 0.5+Y, 0.5-X, 0.75+Z SYMM 0.5-X, 0.5+Y, 0.25-Z SYMM 0.5+X, 0.5-Y, 0.75-Z SYMM Y, X, –Z SYMM –Y, –X, 0.5-Z SFAC C H N O S UNIT 96 136 8 16 20 OMIT -4 MERG 4 TEMP -53 SIZE 0.50 0.39 0.20 L·S. 4 BOND $H CONF ACTA FMAP 2 PLAN 10 EQIV $1 +Y, +X, –Z DFIX 1.52 0.005 C2 C3 C2' C3' C5 C6 C5' C6' C15 C15_$1 DFIX 1.47 0.005 N1 C2 N1 C2' DFIX 1.82 0.005 S4 C3 S4 C3' S4 C5 S4 C5' S7 C6 S7 C6' DELU 0.01 W GH T 0.0168 7.15 REM +++ EXTI refined to within less than three σ of zero FVAR 0.49538 0.70476 N1 3 0.735062 0.927651 0.043156 11.00000 0.05970 0.04729 = 0.07075 - 0.01013 0.00964 0.00513 PART 1 C2 1 0.640727 0.879603 0.080370 21.00000 0.06581 0.05802 = 0.06347 0.00394 0.00342 0.01167 AFIX 23 H2A 2 0.617862 0.926621 0.120595 21.00000 - 1.20000 H2B 2 0.660707 0.809302 0.100978 21.00000 - 1.20000 AFIX 0 C3 1 0.548333 0.865367 0.026984 21.00000 0.09527 0.06778 = 0.05940 0.00981 - 0.00573 - 0.01719 AFIX 23 H3A 2 0.572327 0.821150 - 0.014378 21.00000 - 1.20000 H3B 2 0.526279 0.936085 0.008067 21.00000 - 1.20000 AFIX 0 PART 2 C2' 1 0.619903 0.900815 0.034206 - 21.00000 0.05683 AFIX 23 H2C 2 0.609599 0.867727 - 0.013955 - 21.00000 - 1.20000 H2D 2 0.577896 0.967915 0.035240 - 21.00000 - 1.20000 AFIX 0 C3' 1 0.575562 0.824740 0.092029 - 21.00000 0.07925 AFIX 23 H3C 2 0.582847 0.857239 0.140624 - 21.00000 - 1.20000 H3D 2 0.615683 0.756483 0.091483 - 21.00000 - 1.20000 AFIX 0 PART 0 S4 5 0.433598 0.800436 0.071422 11.00000 0.06760 0.07369 = 0.12502 - 0.02089 0.02130 - 0.00326 PART 1 C5 1 0.464859 0.657719 0.069440 21.00000 0.05062 0.06294 = 0.06178 0.00940 - 0.00779 - 0.00998 AFIX 23 H5A 2 0.540430 0.647473 0.083845 21.00000 - 1.20000 H5B 2 0.419516 0.620336 0.105338 21.00000 - 1.20000 AFIX 0 C6 1 0.447306 0.607106 - 0.004996 21.00000 0.03221 0.06648 = 0.07131 - 0.00366 0.02165 - 0.00805 AFIX 23 H6A 2 0.500259 0.636124 - 0.039644 21.00000 - 1.20000 H6B 2 0.374957 0.625544 - 0.022830 21.00000 - 1.20000 AFIX 0 PART 2 C5' 1 0.434389 0.673012 0.021875 - 21.00000 0.06710 AFIX 23 H5C 2 0.360854 0.659150 0.004367 - 21.00000 - 1.20000 H5D 2 0.480506 0.681675 - 0.021269 - 21.00000 - 1.20000 AFIX 0 C6' 1 0.472442 0.573803 0.063263 - 21.00000 0.10067 AFIX 23 H6C 2 0.427187 0.561538 0.106425 - 21.00000 - 1.20000 H6D 2 0.547503 0.582849 0.079178 - 21.00000 - 1.20000 AFIX 0 PART 0 S7 5 0.461100 0.461100 0.000000 10.50000 0.06350 0.06350 = 0.10442 - 0.00451 0.00451 - 0.01544 C15 1 0.792950 0.872234 - 0.016487 11.00000 0.08153 0.07895 = 0.07217 - 0.01077 - 0.00253 0.01636 AFIX 23 H15A 2 0.831582 0.925195 - 0.046528 11.00000 - 1.20000 H15B 2 0.741374 0.833867 - 0.047762 11.00000 - 1.20000 AFIX 0 S1T 5 0.754410 1.057717 0.046421 11.00000 0.09290 0.05383 = 0.05038 - 0.00765 - 0.00739 - 0.00741 O1T 4 0.699563 1.097345 0.109116 11.00000 0.18739 0.06157 = 0.04539 - 0.01209 0.00841 0.01674 O2T 4 0.868456 1.073434 0.040521 11.00000 0.08381 0.09360 = 0.10118 0.02606 - 0.03988 - 0.03498 C1T 1 0.693513 1.114643 - 0.031886 11.00000 0.06165 0.04223 = 0.04823 - 0.01376 0.00417 - 0.00018 C2T 1 0.586384 1.147639 - 0.027346 11.00000 0.06479 0.05854 = 0.06288 - 0.00413 0.01500 - 0.00455 AFIX 43 H2TA 2 0.548196 1.142142 0.016908 11.00000 - 1.20000 AFIX 0 C3T 1 0.536909 1.188864 - 0.089447 11.00000 0.05371 0.05237 = 0.09108 0.00657 0.00319 0.00717 AFIX 43 H3TA 2 0.464629 1.211866 - 0.086878 11.00000 - 1.20000 AFIX 0 C4T 1 0.592127 1.196791 - 0.155316 11.00000 0.07742 0.04549 = 0.07335 0.00420 - 0.00491 - 0.00842 C5T 1 0.698365 1.160743 - 0.157140 11.00000 0.07718 0.05803 = 0.04430 - 0.00819 0.00887 - 0.00212 AFIX 43 H5T 2 0.736728 1.163149 - 0.201451 11.00000 - 1.20000 AFIX 0 C6T 1 0.748295 1.121920 - 0.096063 11.00000 0.05646 0.04718 = 0.05703 - 0.00600 0.01037 - 0.00748 AFIX 43 H6T 2 0.820957 1.100096 - 0.098390 11.00000 - 1.20000 AFIX 0 C7T 1 0.538574 1.241837 - 0.223153 11.00000 0.09661 0.09977 = 0.09504 0.02563 - 0.02563 - 0.01422 AFIX 137 H7T1 2 0.563486 1.315128 - 0.231431 11.00000 - 1.50000 H7T2 2 0.460809 1.241960 - 0.216571 11.00000 - 1.50000 H7T3 2 0.557103 1.197292 - 0.264933 11.00000 - 1.50000

HKLF 4

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7351 (6)0.9277 (6)0.0432 (4)0.0592 (19)
C20.6407 (7)0.8796 (11)0.0804 (6)0.062 (4)0.705 (12)
H2A0.61790.92660.12060.075*0.705 (12)
H2B0.66070.80930.10100.075*0.705 (12)
C30.5483 (7)0.8654 (11)0.0270 (6)0.074 (4)0.705 (12)
H3A0.57230.82110.01440.089*0.705 (12)
H3B0.52630.93610.00810.089*0.705 (12)
C2'0.6199 (11)0.901 (3)0.0342 (16)0.057 (10)*0.295 (12)
H2C0.60960.86770.01400.068*0.295 (12)
H2D0.57790.96790.03520.068*0.295 (12)
C3'0.5756 (9)0.825 (3)0.0920 (16)0.079 (12)*0.295 (12)
H3C0.58280.85720.14060.095*0.295 (12)
H3D0.61570.75650.09150.095*0.295 (12)
S40.4336 (3)0.8004 (3)0.07142 (19)0.0888 (11)
C50.4649 (11)0.6577 (5)0.0694 (5)0.058 (4)0.705 (12)
H5A0.54040.64750.08380.070*0.705 (12)
H5B0.41950.62030.10530.070*0.705 (12)
C60.4473 (9)0.6071 (4)0.0050 (5)0.057 (3)0.705 (12)
H6A0.50030.63610.03960.068*0.705 (12)
H6B0.37500.62550.02280.068*0.705 (12)
C5'0.434 (3)0.6730 (13)0.0219 (15)0.067 (11)*0.295 (12)
H5C0.36090.65910.00440.081*0.295 (12)
H5D0.48050.68170.02130.081*0.295 (12)
C6'0.472 (4)0.5738 (15)0.0633 (13)0.101 (15)*0.295 (12)
H6C0.42720.56150.10640.121*0.295 (12)
H6D0.54750.58280.07920.121*0.295 (12)
S70.4611 (2)0.4611 (2)0.00000.0771 (12)
C150.7930 (7)0.8722 (7)0.0165 (5)0.078 (3)
H15A0.83160.92520.04650.093*
H15B0.74140.83390.04780.093*
S1T0.7544 (3)1.0577 (2)0.04642 (13)0.0657 (8)
O1T0.6996 (8)1.0973 (6)0.1091 (3)0.098 (3)
O2T0.8685 (6)1.0734 (6)0.0405 (4)0.093 (2)
C1T0.6935 (8)1.1146 (7)0.0319 (4)0.051 (2)
C2T0.5864 (8)1.1476 (7)0.0273 (5)0.062 (3)
H2TA0.54821.14210.01690.074*
C3T0.5369 (8)1.1889 (8)0.0894 (5)0.066 (3)
H3TA0.46461.21190.08690.079*
C4T0.5921 (9)1.1968 (8)0.1553 (6)0.065 (3)
C5T0.6984 (9)1.1607 (7)0.1571 (5)0.060 (2)
H5T0.73671.16310.20150.072*
C6T0.7483 (8)1.1219 (7)0.0961 (4)0.054 (2)
H6T0.82101.10010.09840.064*
C7T0.5386 (9)1.2418 (9)0.2232 (5)0.097 (4)
H7T10.56351.31510.23140.146*
H7T20.46081.24200.21660.146*
H7T30.55711.19730.26490.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.060 (5)0.047 (4)0.071 (5)0.005 (4)0.010 (4)0.010 (4)
C20.066 (7)0.058 (8)0.063 (9)0.012 (6)0.003 (6)0.004 (8)
C30.095 (9)0.068 (9)0.059 (8)0.017 (8)0.006 (7)0.010 (8)
S40.068 (2)0.074 (2)0.125 (3)0.0033 (17)0.0213 (19)0.0209 (19)
C50.051 (9)0.063 (6)0.062 (8)0.010 (6)0.008 (8)0.009 (6)
C60.032 (7)0.066 (6)0.071 (8)0.008 (6)0.022 (7)0.004 (6)
S70.0635 (15)0.0635 (15)0.104 (3)0.015 (2)0.0045 (18)0.0045 (18)
C150.082 (7)0.079 (7)0.072 (7)0.016 (6)0.003 (6)0.011 (6)
S1T0.093 (2)0.0538 (15)0.0504 (13)0.0074 (15)0.0074 (15)0.0076 (13)
O1T0.187 (9)0.062 (5)0.045 (4)0.017 (5)0.008 (5)0.012 (3)
O2T0.084 (5)0.094 (6)0.101 (5)0.035 (4)0.040 (4)0.026 (5)
C1T0.062 (5)0.042 (5)0.048 (4)0.000 (4)0.004 (4)0.014 (4)
C2T0.065 (6)0.059 (6)0.063 (5)0.005 (5)0.015 (5)0.004 (5)
C3T0.054 (6)0.052 (6)0.091 (6)0.007 (5)0.003 (5)0.007 (6)
C4T0.077 (6)0.045 (6)0.073 (5)0.008 (5)0.005 (5)0.004 (5)
C5T0.077 (6)0.058 (6)0.044 (4)0.002 (5)0.009 (5)0.008 (5)
C6T0.056 (5)0.047 (5)0.057 (5)0.007 (5)0.010 (4)0.006 (4)
C7T0.097 (9)0.100 (9)0.095 (7)0.014 (7)0.026 (7)0.026 (7)
Geometric parameters (Å, º) top
N1—C21.477 (5)C5'—H5D0.9800
N1—C2'1.473 (5)C6'—S71.818 (5)
N1—C151.475 (11)C6'—H6C0.9800
N1—S1T1.629 (7)C6'—H6D0.9800
C2—C31.514 (5)S7—C6i1.817 (5)
C2—H2A0.9800S7—C6'i1.818 (5)
C2—H2B0.9800C15—C15i1.513 (12)
C3—S41.823 (5)C15—H15A0.9800
C3—H3A0.9800C15—H15B0.9800
C3—H3B0.9800S1T—O1T1.420 (7)
C2'—C3'1.519 (5)S1T—O2T1.429 (7)
C2'—H2C0.9800S1T—C1T1.766 (9)
C2'—H2D0.9800C1T—C6T1.359 (11)
C3'—S41.822 (5)C1T—C2T1.390 (12)
C3'—H3C0.9800C2T—C3T1.388 (12)
C3'—H3D0.9800C2T—H2TA0.9400
S4—C51.809 (5)C3T—C4T1.389 (12)
S4—C5'1.819 (5)C3T—H3TA0.9400
C5—C61.515 (5)C4T—C5T1.389 (14)
C5—H5A0.9800C4T—C7T1.513 (12)
C5—H5B0.9800C5T—C6T1.364 (12)
C6—S71.817 (5)C5T—H5T0.9400
C6—H6A0.9800C6T—H6T0.9400
C6—H6B0.9800C7T—H7T10.9700
C5'—C6'1.518 (5)C7T—H7T20.9700
C5'—H5C0.9800C7T—H7T30.9700
C15—N1—C2'106.4 (16)S4—C5'—H5D108.0
C15—N1—C2122.6 (9)H5C—C5'—H5D107.3
C15—N1—S1T114.5 (6)C5'—C6'—S7106.2 (8)
C2—N1—S1T119.8 (7)C5'—C6'—H6C110.5
C2'—N1—S1T111.7 (14)S7—C6'—H6C110.5
N1—C2—C3110.3 (7)C5'—C6'—H6D110.5
N1—C2—H2A109.6S7—C6'—H6D110.5
C3—C2—H2A109.6H6C—C6'—H6D108.7
N1—C2—H2B109.6C6—S7—C6i100.9 (8)
C3—C2—H2B109.6C6'—S7—C6'i107 (3)
H2A—C2—H2B108.1N1—C15—C15i108.8 (9)
C2—C3—S4110.6 (6)N1—C15—H15A109.9
C2—C3—H3A109.5C15i—C15—H15A109.9
S4—C3—H3A109.5N1—C15—H15B109.9
C2—C3—H3B109.5C15i—C15—H15B109.9
S4—C3—H3B109.5H15A—C15—H15B108.3
H3A—C3—H3B108.1O1T—S1T—O2T119.1 (5)
N1—C2'—C3'114.3 (13)O1T—S1T—N1107.5 (5)
N1—C2'—H2C108.7O2T—S1T—N1106.1 (4)
C3'—C2'—H2C108.7O1T—S1T—C1T108.3 (5)
N1—C2'—H2D108.7O2T—S1T—C1T107.8 (5)
C3'—C2'—H2D108.7N1—S1T—C1T107.6 (4)
H2C—C2'—H2D107.6C6T—C1T—C2T120.5 (9)
C2'—C3'—S4107.9 (9)C6T—C1T—S1T121.0 (8)
C2'—C3'—H3C110.1C2T—C1T—S1T118.4 (7)
S4—C3'—H3C110.1C3T—C2T—C1T118.7 (9)
C2'—C3'—H3D110.1C3T—C2T—H2TA120.7
S4—C3'—H3D110.1C1T—C2T—H2TA120.7
H3C—C3'—H3D108.4C2T—C3T—C4T121.3 (9)
C5'—S4—C3'103.9 (18)C2T—C3T—H3TA119.4
C5—S4—C3104.8 (7)C4T—C3T—H3TA119.4
C6—C5—S4113.0 (5)C3T—C4T—C5T117.6 (9)
C6—C5—H5A109.0C3T—C4T—C7T121.5 (10)
S4—C5—H5A109.0C5T—C4T—C7T120.9 (10)
C6—C5—H5B109.0C6T—C5T—C4T121.5 (9)
S4—C5—H5B109.0C6T—C5T—H5T119.3
H5A—C5—H5B107.8C4T—C5T—H5T119.3
C5—C6—S7110.6 (5)C1T—C6T—C5T120.3 (9)
C5—C6—H6A109.5C1T—C6T—H6T119.8
S7—C6—H6A109.5C5T—C6T—H6T119.8
C5—C6—H6B109.5C4T—C7T—H7T1109.5
S7—C6—H6B109.5C4T—C7T—H7T2109.5
H6A—C6—H6B108.1H7T1—C7T—H7T2109.5
C6'—C5'—S4117.0 (12)C4T—C7T—H7T3109.5
C6'—C5'—H5C108.0H7T1—C7T—H7T3109.5
S4—C5'—H5C108.0H7T2—C7T—H7T3109.5
C6'—C5'—H5D108.0
C15—N1—C2—C363.6 (13)C2'—N1—S1T—O2T168.8 (13)
S1T—N1—C2—C395.5 (11)C2—N1—S1T—O2T151.6 (7)
N1—C2—C3—S4177.4 (8)C15—N1—S1T—C1T67.4 (7)
C15—N1—C2'—C3'109 (3)C2'—N1—S1T—C1T53.7 (14)
C2—N1—C2'—C3'14 (2)C2—N1—S1T—C1T93.3 (8)
S1T—N1—C2'—C3'125 (3)O1T—S1T—C1T—C6T157.5 (8)
N1—C2'—C3'—S4180 (2)O2T—S1T—C1T—C6T27.4 (9)
C2'—C3'—S4—C5'97 (3)N1—S1T—C1T—C6T86.6 (8)
C2—C3—S4—C582.1 (11)O1T—S1T—C1T—C2T25.3 (9)
C3—S4—C5—C676.6 (10)O2T—S1T—C1T—C2T155.4 (8)
S4—C5—C6—S7171.7 (7)N1—S1T—C1T—C2T90.6 (8)
C3'—S4—C5'—C6'64 (3)C6T—C1T—C2T—C3T0.5 (14)
S4—C5'—C6'—S7179 (2)S1T—C1T—C2T—C3T177.7 (7)
C5—C6—S7—C6i76.4 (8)C1T—C2T—C3T—C4T0.4 (15)
C5'—C6'—S7—C6'i76 (3)C2T—C3T—C4T—C5T0.8 (15)
C2'—N1—C15—C15i118.6 (12)C2T—C3T—C4T—C7T179.9 (9)
C2—N1—C15—C15i82.4 (8)C3T—C4T—C5T—C6T2.0 (14)
S1T—N1—C15—C15i117.5 (4)C7T—C4T—C5T—C6T178.7 (9)
C15—N1—S1T—O1T176.2 (6)C2T—C1T—C6T—C5T0.7 (14)
C2'—N1—S1T—O1T62.7 (14)S1T—C1T—C6T—C5T176.5 (7)
C2—N1—S1T—O1T23.1 (8)C4T—C5T—C6T—C1T2.0 (14)
C15—N1—S1T—O2T47.8 (7)
Symmetry code: (i) y, x, z.
 

Acknowledgements

We thank the EPSRC (UK) for the provision of a diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlenny, M. W., Blake, A. J., Wilson, C. & Schröder, M. (2003). Dalton Trans. pp. 1941–1951.  Web of Science CSD CrossRef Google Scholar
First citationLove, J. B., Vere, J. M., Glenny, M. W., Blake, A. J. & Schröder, M. (2001). Chem. Commun. pp. 2678–2679.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds