metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chloro-bis­{bis­­[4-(2-pyridyl)­benz­aldehyde-κ2C2,N′]­iridium} di­chloro­methane sesquisolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Rd, Durham DH1 3LE, England
*Correspondence e-mail: andrew.beeby@durham.ac.uk

(Received 30 April 2004; accepted 12 May 2004; online 22 May 2004)

The title compound, [Ir2Cl2(C12H8NO)4]·1.5CH2Cl2 or [Ir(fppy)2Cl]2·1.5CH2Cl2 [where fppy is 4-(2-pyridyl)­benz­aldehyde], is a dinuclear iridium(III) complex containing two six-coordinate iridium centres connected by two bridging chlorides, which has crystallized with the solvent di­chloro­methane.

Comment

Electro­phospho­rescent complexes that are capable of generating pure red, green and blue light are in high demand due to their potential use as dopants in full-colour organic light-emitting displays. Triply ortho-metallated iridium(III) complexes containing cyclo­metalating ligands, such as 2-phenyl­pyridine, have already been exploited in these kinds of devices with a great deal of success (Baldo et al., 1999[Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. (1999). Appl. Phys. Lett. 75, 4-6.]; Adachi et al., 2000[Adachi, C., Baldo, M. A., Forrest,S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904-906.]; Beeby et al., 2003[Beeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80-83.]). These monomeric cyclo­metallated iridium(III) complexes may be synthesized by a variety of synthetic pathways, which include those that utilize dichloro-bridged species as precursors (Dedeian et al., 1991[Dedeian, K., Djurovich, P. I., Garces, F. O., Carlson, G. & Watts, R. J. (1991). Inorg. Chem. 30, 1685-1687.]; Grushin et al., 2001[Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494-1495.]; Lamansky et al., 2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]; Tamayo et al., 2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tysba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]). These dinuclear species are generally produced in high yield from the reactions of iridium(III) chloride and the corresponding cyclo­metallating ligand (Sprouse et al., 1984[Sprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647-6653.]).

A number of novel di­chloro-bridged species of this nature have been reported, where they have primarily been used as precursors for the preparation of monomeric ortho-metallated iridium(III) and rhodium(III) complexes (Garces et al., 1988[Garces, F. O., King, K. A. & Watts, R. J. (1988). Inorg. Chem. 27, 3464-3471.]; Tamayo et al., 2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tysba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377-7387.]). Despite this, they have received little or no detailed structural attention.[link]

[Scheme 1]

The title compound, (I[link]) (Fig. 1[link]), consists of two octahedral iridium(III) centres, each ligated by two 4-(2-pyridyl)­benz­aldehyde (fppy) and two bridging chloride ions, together with one and a half mol­ecules of disordered di­chloro­methane solvent per asymmetric unit. The chloride ligands reside in the equatorial plane trans to the fppy C atoms and the fppy N atoms occupy the apical sites with trans geometry. This is consistent with other dinuclear iridium(III) and rhodium(III) complexes of this type (Fronczek et al., 1982[Fronczek, F. R., Gutierrez, M. A. & Selbin, J. (1982). Cryst. Struct. Commun. 11, 1119-1127.]; Steel, 1991[Steel, P. J. (1991). J. Organomet. Chem. 408, 395-402.]; Garces et al., 1993[Garces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117-1120.]; Ghisdavu et al., 1999[Ghisdavu, L., Kolp, B., von Zelewsky, A. & Stoeckli-Evans, H. (1999). Eur. J. Inorg. Chem. pp. 1271-1279.]). However, the Ir—Cl bond lengths fall into two groups, differing by approximately 0.1 Å, with both Ir—Cl1 bonds shorter than the Ir—Cl2 bonds (Table 1[link]). This effect is also seen in the Ir—Cl—Ir angle, which is larger for Cl1 than Cl2. Some degree of asymmetry is seen in the other examples of chloride-bridged iridium(III) or rhodium(III) dimers, but in most cases pairs of Ir—Cl distances are constrained by crystal symmetry.

The disordered di­chloro­methane occupies channels within the structure (Fig. 2[link]), with weak C—H⋯Cl interactions between the iridium dimer and the solvent, which limits the disorder to three components (see below).

[Figure 1]
Figure 1
View of (I[link]), with selected atoms labelled. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level. The solvent has been omitted.
[Figure 2]
Figure 2
The crystal packing in the title compound, viewed down the channels occupied by the disordered di­chloro­methane, with selected C—H⋯Cl hydrogen bonds shown as dashed lines. The [Ir(fppy)2Cl]2 mol­ecules are depicted in black for clarity.

Experimental

IrCl3·3H2O (0.35 g, 1.0 mmol), 4-(2-pyridyl)­benz­aldehyde (0.92 g, 5.0 mmol), 2-ethoxy­ethanol (15 ml) and water (7 ml) were placed in a reaction vessel and heated to 383 K for 8 h with continuous stirring. The initial dark-brown solution became lighter in colour and an orange precipitate formed. The solution was cooled to room temperature and was filtered. The resulting solid was washed with ethanol (2 × 10 ml) and acetone (2 × 10 ml). The product was dissolved in di­chloro­methane and column chromatography (silica gel, di­chloro­methane) yielded a bright-orange solid (0.44 g, 73%). 1H NMR (300 MHz, CDCl3): δ 9.53 (4H, s), 9.27 (4H, d, J = 4.8 Hz), 8.07 (4H, d, J = 7.8 Hz), 7.94 (4H, td, J = 8.0 Hz), 7.68 (4H, d, J = 8.4 Hz), 7.32 (4H, dd, J = 1.5 Hz), 6.91 (4H, td, J = 6.0 Hz), 6.29 (4H, d, J = 1.5 Hz). MS (EI+): m/z 1184 (M+), 592 [(M − IrC24H16N2O2 − Cl)+], 557 [(M − IrC24H16N2O2 − Cl2)+]. Crystals of (I[link]) were grown from di­chloro­methane.

Crystal data
  • [Ir2Cl2(C12H8NO)4]·1.5CH2Cl2

  • Mr = 1311.46

  • Triclinic, [P\overline 1]

  • a = 10.577 (2) Å

  • b = 12.779 (2) Å

  • c = 17.924 (3) Å

  • α = 75.562 (4)°

  • β = 88.993 (3)°

  • γ = 71.629 (3)°

  • V = 2221.7 (7) Å3

  • Z = 2

  • Dx = 1.96 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 999 reflections

  • θ = 3.1–27.4°

  • μ = 6.34 mm−1

  • T = 120 (2) K

  • Block, clear intense orange

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.419, Tmax = 0.531

  • 23 666 measured reflections

  • 10 151 independent reflections

  • 7329 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.5°

  • h = −13 → 13

  • k = −16 → 16

  • l = −22 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 1.03

  • 10 151 reflections

  • 614 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0321P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.83 e Å−3

  • Δρmin = −2.60 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C111 1.976 (7)
Ir1—C311 1.990 (6)
Ir1—N1 2.034 (6)
Ir1—N3 2.046 (6)
Ir1—Cl1 2.5020 (17)
Ir1—Cl2 2.5187 (18)
Ir2—C411 1.974 (7)
Ir2—C211 2.000 (6)
Ir2—N2 2.040 (6)
Ir2—N4 2.040 (6)
Ir2—Cl1 2.5075 (19)
Ir2—Cl2 2.5260 (16)
C111—Ir1—C311 92.9 (3)
C111—Ir1—N1 80.8 (3)
C311—Ir1—N1 96.6 (2)
C111—Ir1—N3 94.7 (3)
C311—Ir1—N3 80.5 (2)
N1—Ir1—N3 174.5 (2)
C111—Ir1—Cl1 92.0 (2)
C311—Ir1—Cl1 172.9 (2)
N1—Ir1—Cl1 89.34 (16)
N3—Ir1—Cl1 93.94 (16)
C111—Ir1—Cl2 171.5 (2)
C311—Ir1—Cl2 93.32 (19)
N1—Ir1—Cl2 92.77 (17)
N3—Ir1—Cl2 92.00 (17)
Cl1—Ir1—Cl2 82.43 (5)
C411—Ir2—C211 91.5 (3)
C411—Ir2—N2 93.5 (3)
C211—Ir2—N2 81.2 (2)
C411—Ir2—N4 80.5 (3)
C211—Ir2—N4 95.4 (2)
N2—Ir2—N4 173.1 (2)
C411—Ir2—Cl1 174.7 (2)
C211—Ir2—Cl1 91.39 (19)
N2—Ir2—Cl1 91.22 (17)
N4—Ir2—Cl1 94.88 (19)
C411—Ir2—Cl2 95.29 (19)
C211—Ir2—Cl2 171.86 (19)
N2—Ir2—Cl2 93.90 (16)
N4—Ir2—Cl2 90.17 (16)
Cl1—Ir2—Cl2 82.17 (5)
Ir1—Cl1—Ir2 98.16 (6)
Ir1—Cl2—Ir2 97.24 (5)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯Cl52 0.93 2.89 3.715 (10) 148
C33—H33A⋯Cl71i 0.93 2.78 3.557 (10) 142
C43—H43A⋯Cl72ii 0.93 2.56 3.205 (11) 127
Symmetry codes: (i) 1+x,y,z-1; (ii) 1+x,y,z.

All H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model, with Uiso = 1.2 or 1.5 times Ueq(parent C atom). The solvent, di­chloro­methane, was modelled as disordered in three components, all partially occupied. One mol­ecule of di­chloro­methane is rotationally disordered about the central C atom and the partial occupancies of the two components were refined (0.57/0.43) and then fixed. The remaining solvent mol­ecule is located close to an inversion centre and was assigned 50% occupancy. Anisotropic displacement parameters were refined for all non-H atoms (including the solvent). Although there is a small amount of electron density unaccounted for in this disordered solvent model, all peaks larger than 1 e Å are within 1 Å of an Ir atom. The deepest hole is located 1.37 Å from atom H17A.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998[Bruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Di-µ-chloro-bis{bis[4-(2-pyridyl)benzaldehyde-κ2C2,N']iridium} dichloromethane sesquisolvate top
Crystal data top
[Ir2Cl2(C12H8NO)4]·1.5CH2Cl2Z = 2
Mr = 1311.46F(000) = 1262
Triclinic, P1Dx = 1.96 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.577 (2) ÅCell parameters from 999 reflections
b = 12.779 (2) Åθ = 3.1–27.4°
c = 17.924 (3) ŵ = 6.34 mm1
α = 75.562 (4)°T = 120 K
β = 88.993 (3)°Block, clear_intense_orange
γ = 71.629 (3)°0.15 × 0.10 × 0.10 mm
V = 2221.7 (7) Å3
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
10151 independent reflections
Radiation source: fine-focus sealed tube7329 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.052
Detector resolution: 8 pixels mm-1θmax = 27.5°, θmin = 1.2°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1616
Tmin = 0.419, Tmax = 0.531l = 2223
23666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0321P)2]
where P = (Fo2 + 2Fc2)/3
10151 reflections(Δ/σ)max = 0.002
614 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 2.60 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal Space, by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (16 s exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.60771 (3)0.18730 (2)0.23140 (2)0.01512 (7)
Ir20.72796 (3)0.43026 (2)0.24848 (2)0.01583 (8)
Cl10.51553 (17)0.39773 (14)0.21707 (10)0.0217 (4)
Cl20.82189 (16)0.21749 (13)0.26446 (9)0.0188 (4)
N10.5575 (6)0.1602 (5)0.3430 (3)0.0202 (13)
C110.6419 (7)0.1311 (5)0.4057 (4)0.0213 (16)
H11A0.73270.11710.39960.026*
C120.5957 (9)0.1216 (6)0.4789 (4)0.0291 (18)
H12A0.65620.09860.52150.035*
C130.4618 (8)0.1458 (6)0.4896 (4)0.0292 (18)
H13A0.42980.14480.53830.035*
C140.3761 (8)0.1715 (6)0.4258 (4)0.0267 (17)
H14A0.28510.18600.43160.032*
C150.4246 (7)0.1760 (5)0.3527 (4)0.0203 (15)
C160.3504 (7)0.1838 (6)0.2823 (4)0.0209 (16)
C170.2165 (7)0.1924 (6)0.2795 (4)0.0276 (18)
H17A0.16630.20370.32160.033*
C180.1587 (8)0.1841 (6)0.2142 (5)0.035 (2)
H18A0.06840.19140.21170.041*
C190.2350 (7)0.1648 (6)0.1512 (4)0.0255 (17)
C1100.3682 (7)0.1616 (5)0.1535 (4)0.0199 (15)
H10A0.41830.14890.11150.024*
C1110.4280 (7)0.1767 (6)0.2165 (4)0.0187 (15)
C1120.1716 (9)0.1479 (7)0.0855 (5)0.037 (2)
H11B0.08150.15460.08680.044*
O10.2274 (6)0.1261 (5)0.0305 (3)0.0430 (15)
N20.7644 (6)0.4695 (5)0.1344 (3)0.0181 (13)
C210.8378 (7)0.3960 (6)0.0959 (4)0.0203 (15)
H21A0.87420.31960.12220.024*
C220.8614 (7)0.4289 (6)0.0196 (4)0.0237 (16)
H22A0.91410.37570.00480.028*
C230.8068 (7)0.5409 (6)0.0204 (4)0.0254 (17)
H23A0.81960.56480.07260.030*
C240.7321 (8)0.6172 (6)0.0189 (4)0.0263 (17)
H24A0.69440.69370.00710.032*
C250.7127 (6)0.5814 (5)0.0963 (4)0.0149 (13)
C260.6395 (7)0.6543 (6)0.1446 (4)0.0181 (14)
C270.5764 (7)0.7716 (6)0.1157 (4)0.0226 (16)
H27A0.57750.80610.06350.027*
C280.5124 (7)0.8360 (6)0.1652 (4)0.0228 (16)
H28A0.47390.91460.14720.027*
C290.5060 (7)0.7821 (6)0.2424 (4)0.0187 (15)
C2100.5690 (7)0.6649 (5)0.2709 (4)0.0185 (15)
H21B0.56490.63050.32270.022*
C2110.6375 (7)0.5990 (5)0.2232 (4)0.0160 (14)
C2120.4364 (8)0.8525 (6)0.2935 (4)0.0269 (17)
H21C0.39880.93050.27180.032*
O20.4243 (6)0.8170 (5)0.3612 (3)0.0420 (15)
N30.6483 (6)0.2046 (5)0.1178 (3)0.0187 (13)
C310.6061 (7)0.3023 (6)0.0618 (4)0.0227 (16)
H31A0.55320.36810.07440.027*
C320.6387 (8)0.3088 (6)0.0142 (4)0.0286 (18)
H32A0.60820.37760.05180.034*
C330.7163 (8)0.2123 (7)0.0327 (4)0.0300 (18)
H33A0.74270.21510.08270.036*
C340.7553 (8)0.1103 (7)0.0238 (4)0.0308 (18)
H34A0.80640.04360.01160.037*
C350.7180 (7)0.1077 (6)0.0986 (4)0.0196 (15)
C360.7468 (7)0.0051 (5)0.1627 (4)0.0176 (14)
C370.8169 (8)0.1047 (6)0.1556 (4)0.0261 (17)
H37A0.84840.11550.10840.031*
C380.8388 (7)0.1970 (6)0.2195 (4)0.0264 (17)
H38A0.88430.27040.21550.032*
C390.7917 (7)0.1786 (6)0.2902 (4)0.0220 (16)
C3100.7213 (7)0.0707 (5)0.2980 (4)0.0184 (15)
H31B0.68980.06100.34540.022*
C3110.6976 (7)0.0242 (5)0.2338 (4)0.0156 (14)
C3120.8208 (7)0.2794 (6)0.3567 (4)0.0256 (17)
H31C0.86710.34990.34800.031*
O30.7888 (6)0.2776 (4)0.4222 (3)0.0382 (15)
N40.7043 (6)0.4036 (5)0.3642 (3)0.0234 (14)
C410.5911 (8)0.3957 (6)0.3988 (4)0.0259 (17)
H41A0.51740.40250.36820.031*
C420.5815 (9)0.3782 (6)0.4766 (4)0.034 (2)
H42A0.50280.37310.49880.040*
C430.6931 (11)0.3681 (7)0.5222 (5)0.040 (2)
H43A0.68990.35370.57560.049*
C440.8067 (9)0.3793 (6)0.4885 (4)0.0331 (19)
H44A0.87980.37500.51860.040*
C450.8121 (8)0.3972 (6)0.4087 (4)0.0232 (16)
C460.9218 (7)0.4192 (5)0.3639 (4)0.0225 (16)
C471.0382 (8)0.4203 (6)0.3973 (4)0.0251 (17)
H47A1.05500.39540.45060.030*
C481.1300 (7)0.4586 (6)0.3512 (4)0.0259 (17)
H48A1.20800.46040.37330.031*
C491.1029 (7)0.4946 (6)0.2709 (4)0.0238 (16)
C4100.9888 (7)0.4865 (5)0.2380 (4)0.0193 (15)
H41B0.97420.50850.18460.023*
C4110.8956 (7)0.4464 (5)0.2827 (4)0.0181 (15)
C4121.1893 (7)0.5493 (6)0.2235 (5)0.0286 (18)
H41C1.26380.55290.24820.034*
O41.1710 (6)0.5907 (5)0.1540 (3)0.0365 (14)
C510.053 (3)0.0908 (19)0.5027 (17)0.086 (8)0.50
H51A0.05940.09660.44780.104*0.50
H51B0.13300.14470.51460.104*0.50
Cl510.0460 (6)0.0511 (5)0.5549 (3)0.0727 (17)0.50
Cl520.0758 (6)0.1275 (5)0.5215 (4)0.0708 (17)0.50
C610.0708 (12)0.0781 (10)0.7248 (6)0.068 (3)0.57
H61A0.10880.01740.74400.082*0.57
H61B0.01790.05410.75000.082*0.57
Cl610.0560 (6)0.0979 (5)0.6200 (3)0.0866 (18)0.57
Cl620.1623 (6)0.1921 (6)0.7485 (4)0.096 (2)0.57
C710.0708 (12)0.0781 (10)0.7248 (6)0.068 (3)0.43
H71A0.02500.04360.72430.082*0.43
H71B0.11560.03810.70090.082*0.43
Cl710.1217 (6)0.0763 (5)0.8249 (4)0.0558 (15)0.43
Cl720.1220 (7)0.2259 (7)0.6771 (4)0.082 (2)0.43
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01611 (15)0.01162 (14)0.01596 (14)0.00359 (11)0.00360 (11)0.00185 (10)
Ir20.01949 (15)0.01215 (14)0.01470 (14)0.00415 (11)0.00349 (11)0.00274 (10)
Cl10.0197 (9)0.0141 (8)0.0289 (9)0.0041 (7)0.0036 (7)0.0032 (7)
Cl20.0176 (8)0.0142 (8)0.0219 (8)0.0021 (7)0.0027 (7)0.0040 (7)
N10.020 (3)0.013 (3)0.028 (3)0.003 (2)0.003 (3)0.009 (2)
C110.025 (4)0.009 (3)0.023 (4)0.002 (3)0.002 (3)0.004 (3)
C120.049 (5)0.016 (4)0.019 (4)0.009 (3)0.005 (4)0.001 (3)
C130.046 (5)0.017 (4)0.028 (4)0.014 (4)0.017 (4)0.009 (3)
C140.029 (4)0.024 (4)0.029 (4)0.011 (3)0.014 (3)0.007 (3)
C150.027 (4)0.011 (3)0.022 (4)0.012 (3)0.009 (3)0.002 (3)
C160.025 (4)0.018 (3)0.014 (3)0.004 (3)0.010 (3)0.001 (3)
C170.025 (4)0.021 (4)0.030 (4)0.003 (3)0.013 (3)0.003 (3)
C180.012 (4)0.019 (4)0.065 (6)0.002 (3)0.005 (4)0.004 (4)
C190.024 (4)0.023 (4)0.026 (4)0.004 (3)0.005 (3)0.003 (3)
C1100.021 (4)0.015 (3)0.018 (3)0.004 (3)0.002 (3)0.003 (3)
C1110.021 (4)0.015 (3)0.018 (3)0.008 (3)0.002 (3)0.003 (3)
C1120.032 (5)0.037 (5)0.038 (5)0.007 (4)0.003 (4)0.008 (4)
O10.049 (4)0.047 (4)0.039 (4)0.021 (3)0.002 (3)0.015 (3)
N20.019 (3)0.016 (3)0.019 (3)0.005 (2)0.002 (2)0.004 (2)
C210.022 (4)0.018 (4)0.020 (4)0.007 (3)0.001 (3)0.002 (3)
C220.028 (4)0.027 (4)0.020 (4)0.012 (3)0.005 (3)0.009 (3)
C230.030 (4)0.027 (4)0.018 (4)0.009 (3)0.004 (3)0.003 (3)
C240.037 (5)0.023 (4)0.015 (3)0.008 (3)0.001 (3)0.000 (3)
C250.018 (3)0.013 (3)0.017 (3)0.007 (3)0.003 (3)0.007 (3)
C260.018 (4)0.015 (3)0.021 (3)0.004 (3)0.001 (3)0.006 (3)
C270.026 (4)0.017 (4)0.023 (4)0.007 (3)0.004 (3)0.002 (3)
C280.028 (4)0.012 (3)0.023 (4)0.002 (3)0.002 (3)0.002 (3)
C290.024 (4)0.017 (3)0.019 (3)0.009 (3)0.007 (3)0.007 (3)
C2100.023 (4)0.012 (3)0.019 (3)0.004 (3)0.001 (3)0.002 (3)
C2110.017 (3)0.010 (3)0.024 (4)0.005 (3)0.001 (3)0.008 (3)
C2120.035 (5)0.024 (4)0.022 (4)0.011 (3)0.008 (3)0.006 (3)
O20.061 (4)0.034 (3)0.031 (3)0.012 (3)0.017 (3)0.014 (3)
N30.017 (3)0.014 (3)0.022 (3)0.001 (2)0.003 (2)0.006 (2)
C310.024 (4)0.016 (3)0.028 (4)0.005 (3)0.003 (3)0.005 (3)
C320.039 (5)0.026 (4)0.022 (4)0.014 (4)0.003 (3)0.002 (3)
C330.047 (5)0.037 (5)0.012 (3)0.023 (4)0.003 (3)0.004 (3)
C340.046 (5)0.027 (4)0.021 (4)0.014 (4)0.004 (4)0.007 (3)
C350.029 (4)0.015 (3)0.017 (3)0.011 (3)0.005 (3)0.003 (3)
C360.025 (4)0.013 (3)0.014 (3)0.005 (3)0.004 (3)0.004 (3)
C370.033 (4)0.021 (4)0.024 (4)0.006 (3)0.008 (3)0.010 (3)
C380.028 (4)0.018 (4)0.027 (4)0.003 (3)0.001 (3)0.006 (3)
C390.027 (4)0.020 (4)0.023 (4)0.011 (3)0.003 (3)0.006 (3)
C3100.023 (4)0.016 (3)0.019 (3)0.009 (3)0.000 (3)0.005 (3)
C3110.025 (4)0.006 (3)0.019 (3)0.009 (3)0.001 (3)0.002 (2)
C3120.028 (4)0.014 (3)0.028 (4)0.002 (3)0.003 (3)0.002 (3)
O30.052 (4)0.022 (3)0.027 (3)0.000 (3)0.006 (3)0.002 (2)
N40.036 (4)0.011 (3)0.020 (3)0.006 (3)0.009 (3)0.001 (2)
C410.033 (4)0.015 (4)0.029 (4)0.005 (3)0.013 (3)0.009 (3)
C420.052 (6)0.022 (4)0.029 (4)0.012 (4)0.028 (4)0.013 (3)
C430.076 (7)0.030 (5)0.020 (4)0.021 (4)0.011 (4)0.010 (3)
C440.053 (5)0.029 (4)0.023 (4)0.021 (4)0.004 (4)0.006 (3)
C450.036 (4)0.016 (3)0.014 (3)0.008 (3)0.003 (3)0.003 (3)
C460.034 (4)0.006 (3)0.025 (4)0.002 (3)0.007 (3)0.006 (3)
C470.037 (4)0.020 (4)0.013 (3)0.004 (3)0.002 (3)0.002 (3)
C480.023 (4)0.017 (4)0.034 (4)0.004 (3)0.012 (3)0.010 (3)
C490.026 (4)0.024 (4)0.025 (4)0.009 (3)0.004 (3)0.011 (3)
C4100.022 (4)0.016 (3)0.021 (4)0.005 (3)0.002 (3)0.009 (3)
C4110.018 (4)0.014 (3)0.023 (4)0.006 (3)0.000 (3)0.005 (3)
C4120.018 (4)0.024 (4)0.045 (5)0.002 (3)0.000 (3)0.018 (4)
O40.035 (3)0.050 (4)0.032 (3)0.019 (3)0.011 (3)0.017 (3)
C510.076 (18)0.057 (16)0.12 (2)0.023 (14)0.028 (17)0.015 (15)
Cl510.062 (4)0.082 (4)0.065 (4)0.029 (3)0.005 (3)0.004 (3)
Cl520.058 (4)0.053 (3)0.087 (4)0.010 (3)0.015 (3)0.003 (3)
C610.065 (8)0.064 (8)0.067 (8)0.017 (6)0.011 (6)0.007 (6)
Cl610.073 (4)0.086 (4)0.077 (4)0.001 (3)0.020 (3)0.012 (3)
Cl620.052 (3)0.123 (5)0.139 (6)0.020 (3)0.000 (4)0.089 (5)
C710.065 (8)0.064 (8)0.067 (8)0.017 (6)0.011 (6)0.007 (6)
Cl710.058 (4)0.064 (4)0.060 (4)0.032 (3)0.025 (3)0.027 (3)
Cl720.050 (4)0.113 (6)0.062 (4)0.023 (4)0.003 (3)0.014 (4)
Geometric parameters (Å, º) top
Ir1—C1111.976 (7)N3—C311.344 (8)
Ir1—C3111.990 (6)N3—C351.351 (8)
Ir1—N12.034 (6)C31—C321.387 (10)
Ir1—N32.046 (6)C31—H31A0.9300
Ir1—Cl12.5020 (17)C32—C331.364 (11)
Ir1—Cl22.5187 (18)C32—H32A0.9300
Ir2—C4111.974 (7)C33—C341.382 (10)
Ir2—C2112.000 (6)C33—H33A0.9300
Ir2—N22.040 (6)C34—C351.386 (10)
Ir2—N42.040 (6)C34—H34A0.9300
Ir2—Cl12.5075 (19)C35—C361.464 (9)
Ir2—Cl22.5260 (16)C36—C371.401 (9)
N1—C111.347 (9)C36—C3111.416 (9)
N1—C151.370 (9)C37—C381.386 (10)
C11—C121.383 (10)C37—H37A0.9300
C11—H11A0.9300C38—C391.400 (10)
C12—C131.372 (11)C38—H38A0.9300
C12—H12A0.9300C39—C3101.386 (9)
C13—C141.378 (11)C39—C3121.474 (9)
C13—H13A0.9300C310—C3111.406 (9)
C14—C151.393 (10)C310—H31B0.9300
C14—H14A0.9300C312—O31.220 (9)
C15—C161.463 (10)C312—H31C0.9300
C16—C171.386 (10)N4—C411.358 (9)
C16—C1111.430 (9)N4—C451.373 (10)
C17—C181.373 (11)C41—C421.363 (10)
C17—H17A0.9300C41—H41A0.9300
C18—C191.404 (11)C42—C431.402 (12)
C18—H18A0.9300C42—H42A0.9300
C19—C1101.397 (10)C43—C441.367 (12)
C19—C1121.458 (11)C43—H43A0.9300
C110—C1111.387 (10)C44—C451.395 (10)
C110—H10A0.9300C44—H44A0.9300
C112—O11.188 (10)C45—C461.459 (10)
C112—H11B0.9300C46—C471.384 (10)
N2—C211.344 (9)C46—C4111.421 (9)
N2—C251.358 (8)C47—C481.391 (11)
C21—C221.369 (9)C47—H47A0.9300
C21—H21A0.9300C48—C491.403 (10)
C22—C231.371 (9)C48—H48A0.9300
C22—H22A0.9300C49—C4101.395 (10)
C23—C241.382 (10)C49—C4121.458 (11)
C23—H23A0.9300C410—C4111.400 (10)
C24—C251.383 (9)C410—H41B0.9300
C24—H24A0.9300C412—O41.218 (9)
C25—C261.463 (9)C412—H41C0.9300
C26—C271.398 (9)C51—Cl521.64 (3)
C26—C2111.414 (9)C51—Cl511.80 (2)
C27—C281.386 (10)C51—H51A0.9700
C27—H27A0.9300C51—H51B0.9700
C28—C291.395 (9)Cl51—C51i1.52 (3)
C28—H28A0.9300Cl51—Cl52i1.950 (9)
C29—C2101.396 (9)Cl51—Cl51i2.447 (11)
C29—C2121.469 (10)Cl52—Cl51i1.950 (9)
C210—C2111.384 (9)C61—Cl621.626 (13)
C210—H21B0.9300C61—Cl611.842 (13)
C212—O21.206 (8)C61—H61A0.9700
C212—H21C0.9300C61—H61B0.9700
C111—Ir1—C31192.9 (3)C29—C210—H21B119.5
C111—Ir1—N180.8 (3)C210—C211—C26117.6 (6)
C311—Ir1—N196.6 (2)C210—C211—Ir2128.7 (5)
C111—Ir1—N394.7 (3)C26—C211—Ir2113.5 (5)
C311—Ir1—N380.5 (2)O2—C212—C29125.0 (7)
N1—Ir1—N3174.5 (2)O2—C212—H21C117.5
C111—Ir1—Cl192.0 (2)C29—C212—H21C117.5
C311—Ir1—Cl1172.9 (2)C31—N3—C35118.8 (6)
N1—Ir1—Cl189.34 (16)C31—N3—Ir1125.2 (5)
N3—Ir1—Cl193.94 (16)C35—N3—Ir1115.9 (4)
C111—Ir1—Cl2171.5 (2)N3—C31—C32122.4 (7)
C311—Ir1—Cl293.32 (19)N3—C31—H31A118.8
N1—Ir1—Cl292.77 (17)C32—C31—H31A118.8
N3—Ir1—Cl292.00 (17)C33—C32—C31118.7 (7)
Cl1—Ir1—Cl282.43 (5)C33—C32—H32A120.6
C411—Ir2—C21191.5 (3)C31—C32—H32A120.6
C411—Ir2—N293.5 (3)C32—C33—C34119.3 (7)
C211—Ir2—N281.2 (2)C32—C33—H33A120.4
C411—Ir2—N480.5 (3)C34—C33—H33A120.4
C211—Ir2—N495.4 (2)C33—C34—C35119.8 (7)
N2—Ir2—N4173.1 (2)C33—C34—H34A120.1
C411—Ir2—Cl1174.7 (2)C35—C34—H34A120.1
C211—Ir2—Cl191.39 (19)N3—C35—C34120.7 (6)
N2—Ir2—Cl191.22 (17)N3—C35—C36113.9 (6)
N4—Ir2—Cl194.88 (19)C34—C35—C36125.4 (6)
C411—Ir2—Cl295.29 (19)C37—C36—C311121.6 (6)
C211—Ir2—Cl2171.86 (19)C37—C36—C35123.5 (6)
N2—Ir2—Cl293.90 (16)C311—C36—C35115.0 (6)
N4—Ir2—Cl290.17 (16)C38—C37—C36119.4 (7)
Cl1—Ir2—Cl282.17 (5)C38—C37—H37A120.3
Ir1—Cl1—Ir298.16 (6)C36—C37—H37A120.3
Ir1—Cl2—Ir297.24 (5)C37—C38—C39119.3 (7)
C11—N1—C15119.1 (6)C37—C38—H38A120.3
C11—N1—Ir1125.9 (5)C39—C38—H38A120.3
C15—N1—Ir1115.0 (4)C310—C39—C38121.9 (6)
N1—C11—C12121.1 (7)C310—C39—C312121.0 (7)
N1—C11—H11A119.4C38—C39—C312117.0 (6)
C12—C11—H11A119.4C39—C310—C311119.7 (7)
C13—C12—C11120.8 (7)C39—C310—H31B120.2
C13—C12—H12A119.6C311—C310—H31B120.2
C11—C12—H12A119.6C310—C311—C36118.1 (6)
C12—C13—C14117.9 (7)C310—C311—Ir1127.2 (5)
C12—C13—H13A121.0C36—C311—Ir1114.6 (4)
C14—C13—H13A121.0O3—C312—C39125.1 (7)
C13—C14—C15120.5 (7)O3—C312—H31C117.4
C13—C14—H14A119.7C39—C312—H31C117.4
C15—C14—H14A119.7C41—N4—C45119.0 (6)
N1—C15—C14120.2 (7)C41—N4—Ir2125.4 (5)
N1—C15—C16112.9 (6)C45—N4—Ir2115.5 (5)
C14—C15—C16126.6 (7)N4—C41—C42122.6 (8)
C17—C16—C111121.9 (7)N4—C41—H41A118.7
C17—C16—C15123.1 (6)C42—C41—H41A118.7
C111—C16—C15114.9 (6)C41—C42—C43118.3 (8)
C18—C17—C16119.5 (7)C41—C42—H42A120.8
C18—C17—H17A120.2C43—C42—H42A120.8
C16—C17—H17A120.2C44—C43—C42120.2 (7)
C17—C18—C19120.3 (7)C44—C43—H43A119.9
C17—C18—H18A119.8C42—C43—H43A119.9
C19—C18—H18A119.8C43—C44—C45119.5 (8)
C110—C19—C18119.4 (7)C43—C44—H44A120.2
C110—C19—C112122.4 (7)C45—C44—H44A120.2
C18—C19—C112118.2 (7)N4—C45—C44120.3 (7)
C111—C110—C19121.9 (7)N4—C45—C46113.6 (6)
C111—C110—H10A119.0C44—C45—C46125.9 (7)
C19—C110—H10A119.0C47—C46—C411122.7 (7)
C110—C111—C16116.3 (6)C47—C46—C45123.0 (7)
C110—C111—Ir1130.1 (5)C411—C46—C45114.2 (6)
C16—C111—Ir1113.6 (5)C46—C47—C48120.1 (7)
O1—C112—C19124.4 (8)C46—C47—H47A120.0
O1—C112—H11B117.8C48—C47—H47A120.0
C19—C112—H11B117.8C47—C48—C49118.8 (7)
C21—N2—C25118.6 (6)C47—C48—H48A120.6
C21—N2—Ir2125.9 (4)C49—C48—H48A120.6
C25—N2—Ir2115.4 (4)C410—C49—C48120.2 (7)
N2—C21—C22122.9 (6)C410—C49—C412120.8 (7)
N2—C21—H21A118.6C48—C49—C412118.8 (7)
C22—C21—H21A118.6C49—C410—C411122.4 (7)
C21—C22—C23119.4 (7)C49—C410—H41B118.8
C21—C22—H22A120.3C411—C410—H41B118.8
C23—C22—H22A120.3C410—C411—C46115.5 (6)
C22—C23—C24118.1 (7)C410—C411—Ir2128.9 (5)
C22—C23—H23A120.9C46—C411—Ir2115.4 (5)
C24—C23—H23A120.9O4—C412—C49124.9 (7)
C23—C24—C25120.9 (6)O4—C412—H41C117.6
C23—C24—H24A119.6C49—C412—H41C117.6
C25—C24—H24A119.6Cl52—C51—Cl51114.6 (15)
N2—C25—C24120.1 (6)Cl52—C51—H51A108.6
N2—C25—C26114.0 (6)Cl51—C51—H51A108.6
C24—C25—C26125.9 (6)Cl52—C51—H51B108.6
C27—C26—C211121.6 (6)Cl51—C51—H51B108.6
C27—C26—C25122.6 (6)H51A—C51—H51B107.6
C211—C26—C25115.8 (6)C51i—Cl51—C5185.4 (13)
C28—C27—C26119.5 (6)C51i—Cl51—Cl52i54.6 (11)
C28—C27—H27A120.3C51—Cl51—Cl52i106.7 (10)
C26—C27—H27A120.3Cl52i—Cl51—Cl51i81.5 (4)
C27—C28—C29119.5 (6)C51—Cl52—Cl51i49.1 (10)
C27—C28—H28A120.2Cl62—C61—Cl61113.8 (7)
C29—C28—H28A120.2Cl62—C61—H61A108.8
C28—C29—C210120.6 (6)Cl61—C61—H61A108.8
C28—C29—C212118.3 (6)Cl62—C61—H61B108.8
C210—C29—C212121.1 (6)Cl61—C61—H61B108.8
C211—C210—C29121.1 (6)H61A—C61—H61B107.7
C211—C210—H21B119.5
C111—Ir1—Cl1—Ir2174.2 (2)N2—Ir2—C211—C262.5 (5)
N1—Ir1—Cl1—Ir293.43 (17)N4—Ir2—C211—C26176.5 (5)
N3—Ir1—Cl1—Ir290.96 (17)Cl1—Ir2—C211—C2688.5 (5)
Cl2—Ir1—Cl1—Ir20.54 (6)C28—C29—C212—O2179.6 (8)
C211—Ir2—Cl1—Ir1174.5 (2)C210—C29—C212—O22.1 (12)
N2—Ir2—Cl1—Ir193.23 (16)C111—Ir1—N3—C3181.2 (6)
N4—Ir2—Cl1—Ir190.04 (16)C311—Ir1—N3—C31173.4 (6)
Cl2—Ir2—Cl1—Ir10.54 (6)Cl1—Ir1—N3—C3111.1 (6)
C311—Ir1—Cl2—Ir2173.77 (19)Cl2—Ir1—N3—C3193.6 (6)
N1—Ir1—Cl2—Ir289.50 (16)C111—Ir1—N3—C3595.6 (5)
N3—Ir1—Cl2—Ir293.17 (16)C311—Ir1—N3—C353.5 (5)
Cl1—Ir1—Cl2—Ir20.54 (6)Cl1—Ir1—N3—C35172.1 (5)
C411—Ir2—Cl2—Ir1175.9 (2)Cl2—Ir1—N3—C3589.6 (5)
N2—Ir2—Cl2—Ir190.16 (17)C35—N3—C31—C324.2 (10)
N4—Ir2—Cl2—Ir195.44 (19)Ir1—N3—C31—C32179.1 (5)
Cl1—Ir2—Cl2—Ir10.54 (6)N3—C31—C32—C330.0 (12)
C111—Ir1—N1—C11166.2 (6)C31—C32—C33—C342.8 (12)
C311—Ir1—N1—C1174.3 (6)C32—C33—C34—C351.5 (12)
Cl1—Ir1—N1—C11101.8 (5)C31—N3—C35—C345.4 (11)
Cl2—Ir1—N1—C1119.4 (5)Ir1—N3—C35—C34177.5 (6)
C111—Ir1—N1—C1515.2 (5)C31—N3—C35—C36174.1 (6)
C311—Ir1—N1—C15107.1 (5)Ir1—N3—C35—C362.9 (8)
Cl1—Ir1—N1—C1576.9 (5)C33—C34—C35—N32.6 (12)
Cl2—Ir1—N1—C15159.3 (4)C33—C34—C35—C36176.8 (7)
C15—N1—C11—C122.7 (10)N3—C35—C36—C37179.5 (7)
Ir1—N1—C11—C12175.9 (5)C34—C35—C36—C370.0 (12)
N1—C11—C12—C132.4 (11)N3—C35—C36—C3110.2 (9)
C11—C12—C13—C144.6 (11)C34—C35—C36—C311179.7 (7)
C12—C13—C14—C151.9 (11)C311—C36—C37—C380.0 (11)
C11—N1—C15—C145.4 (9)C35—C36—C37—C38179.6 (7)
Ir1—N1—C15—C14173.3 (5)C36—C37—C38—C390.7 (11)
C11—N1—C15—C16168.1 (6)C37—C38—C39—C3101.3 (11)
Ir1—N1—C15—C1613.1 (7)C37—C38—C39—C312178.5 (7)
C13—C14—C15—N13.1 (10)C38—C39—C310—C3111.1 (11)
C13—C14—C15—C16169.4 (7)C312—C39—C310—C311178.7 (6)
N1—C15—C16—C17175.7 (6)C39—C310—C311—C360.3 (10)
C14—C15—C16—C172.7 (11)C39—C310—C311—Ir1176.7 (5)
N1—C15—C16—C1111.6 (8)C37—C36—C311—C3100.2 (10)
C14—C15—C16—C111174.6 (7)C35—C36—C311—C310179.8 (6)
C111—C16—C17—C185.7 (11)C37—C36—C311—Ir1177.6 (6)
C15—C16—C17—C18171.4 (7)C35—C36—C311—Ir12.7 (8)
C16—C17—C18—C191.3 (11)C111—Ir1—C311—C31085.3 (6)
C17—C18—C19—C1104.2 (11)N1—Ir1—C311—C3104.2 (6)
C17—C18—C19—C112175.3 (7)N3—Ir1—C311—C310179.6 (6)
C18—C19—C110—C1110.1 (10)Cl2—Ir1—C311—C31089.0 (6)
C112—C19—C110—C111179.4 (7)C111—Ir1—C311—C3697.5 (5)
C19—C110—C111—C166.4 (10)N1—Ir1—C311—C36178.6 (5)
C19—C110—C111—Ir1175.0 (5)N3—Ir1—C311—C363.3 (5)
C17—C16—C111—C1109.4 (10)Cl2—Ir1—C311—C3688.2 (5)
C15—C16—C111—C110167.9 (6)C310—C39—C312—O31.0 (12)
C17—C16—C111—Ir1171.7 (5)C38—C39—C312—O3178.8 (8)
C15—C16—C111—Ir110.9 (7)C411—Ir2—N4—C41171.4 (6)
C311—Ir1—C111—C11068.7 (6)C211—Ir2—N4—C4180.7 (6)
N1—Ir1—C111—C110164.9 (7)Cl1—Ir2—N4—C4111.1 (5)
N3—Ir1—C111—C11012.0 (6)Cl2—Ir2—N4—C4193.3 (5)
C311—Ir1—C111—C16109.9 (5)C411—Ir2—N4—C456.4 (5)
N1—Ir1—C111—C1613.7 (5)C211—Ir2—N4—C4597.0 (5)
N3—Ir1—C111—C16169.4 (5)Cl1—Ir2—N4—C45171.1 (5)
C110—C19—C112—O12.9 (13)Cl2—Ir2—N4—C4589.0 (5)
C18—C19—C112—O1176.7 (8)C45—N4—C41—C422.0 (10)
C411—Ir2—N2—C2184.9 (6)Ir2—N4—C41—C42179.7 (5)
C211—Ir2—N2—C21175.9 (6)N4—C41—C42—C430.0 (11)
Cl1—Ir2—N2—C2192.9 (6)C41—C42—C43—C442.0 (12)
Cl2—Ir2—N2—C2110.7 (6)C42—C43—C44—C452.0 (12)
C411—Ir2—N2—C2592.4 (5)C41—N4—C45—C442.0 (10)
C211—Ir2—N2—C251.4 (5)Ir2—N4—C45—C44180.0 (5)
Cl1—Ir2—N2—C2589.8 (5)C41—N4—C45—C46173.7 (6)
Cl2—Ir2—N2—C25172.1 (4)Ir2—N4—C45—C464.2 (7)
C25—N2—C21—C220.9 (10)C43—C44—C45—N40.0 (11)
Ir2—N2—C21—C22178.1 (5)C43—C44—C45—C46175.1 (7)
N2—C21—C22—C231.1 (11)N4—C45—C46—C47178.1 (6)
C21—C22—C23—C241.6 (11)C44—C45—C46—C472.6 (11)
C22—C23—C24—C250.2 (11)N4—C45—C46—C4111.7 (8)
C21—N2—C25—C242.3 (10)C44—C45—C46—C411173.7 (7)
Ir2—N2—C25—C24179.7 (5)C411—C46—C47—C485.8 (10)
C21—N2—C25—C26177.5 (6)C45—C46—C47—C48170.2 (6)
Ir2—N2—C25—C260.0 (7)C46—C47—C48—C490.7 (10)
C23—C24—C25—N21.7 (11)C47—C48—C49—C4103.1 (10)
C23—C24—C25—C26178.0 (7)C47—C48—C49—C412171.6 (6)
N2—C25—C26—C27178.5 (6)C48—C49—C410—C4112.0 (10)
C24—C25—C26—C271.7 (11)C412—C49—C410—C411172.6 (6)
N2—C25—C26—C2112.2 (9)C49—C410—C411—C462.7 (10)
C24—C25—C26—C211177.6 (7)C49—C410—C411—Ir2179.0 (5)
C211—C26—C27—C281.2 (11)C47—C46—C411—C4106.6 (10)
C25—C26—C27—C28178.0 (7)C45—C46—C411—C410169.7 (6)
C26—C27—C28—C293.2 (11)C47—C46—C411—Ir2176.5 (5)
C27—C28—C29—C2103.1 (11)C45—C46—C411—Ir27.1 (7)
C27—C28—C29—C212179.5 (7)C211—Ir2—C411—C41073.9 (6)
C28—C29—C210—C2111.0 (11)N2—Ir2—C411—C4107.4 (6)
C212—C29—C210—C211178.3 (7)N4—Ir2—C411—C410169.1 (7)
C29—C210—C211—C261.0 (10)Cl2—Ir2—C411—C410101.6 (6)
C29—C210—C211—Ir2176.9 (5)C211—Ir2—C411—C46102.4 (5)
C27—C26—C211—C2100.8 (10)N2—Ir2—C411—C46176.3 (5)
C25—C26—C211—C210179.9 (6)N4—Ir2—C411—C467.2 (5)
C27—C26—C211—Ir2177.4 (5)Cl2—Ir2—C411—C4682.0 (5)
C25—C26—C211—Ir23.3 (8)C410—C49—C412—O40.3 (12)
C411—Ir2—C211—C21088.0 (7)C48—C49—C412—O4175.0 (7)
N2—Ir2—C211—C210178.6 (7)Cl52—C51—Cl51—C51i77.1 (16)
N4—Ir2—C211—C2107.5 (7)Cl52—C51—Cl51—Cl52i127.9 (14)
Cl1—Ir2—C211—C21087.6 (6)Cl52—C51—Cl51—Cl51i77.1 (16)
C411—Ir2—C211—C2695.9 (5)Cl51—C51—Cl52—Cl51i88.8 (16)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cl520.932.893.715 (10)148
C33—H33A···Cl71ii0.932.783.557 (10)142
C43—H43A···Cl72iii0.932.563.205 (11)127
Symmetry codes: (ii) x+1, y, z1; (iii) x+1, y, z.
 

Acknowledgements

We thank the EPSRC for postgraduate fellowships (ALT and SB) and OPSYS Ltd for financial assistance (SB).

References

First citationAdachi, C., Baldo, M. A., Forrest,S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904–906.  Web of Science CrossRef CAS Google Scholar
First citationBaldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. (1999). Appl. Phys. Lett. 75, 4–6.  Web of Science CrossRef CAS Google Scholar
First citationBeeby, A., Bettington, S., Samuel, I. D. W. & Wang, Z. (2003). J. Mater. Chem. 13, 80–83.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART-NT, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDedeian, K., Djurovich, P. I., Garces, F. O., Carlson, G. & Watts, R. J. (1991). Inorg. Chem. 30, 1685–1687.  CrossRef CAS Web of Science Google Scholar
First citationFronczek, F. R., Gutierrez, M. A. & Selbin, J. (1982). Cryst. Struct. Commun. 11, 1119–1127.  CAS Google Scholar
First citationGarces, F. O., King, K. A. & Watts, R. J. (1988). Inorg. Chem. 27, 3464–3471.  CrossRef CAS Web of Science Google Scholar
First citationGarces, F. O., Dedeian, K., Keder, N. L. & Watts, R. J. (1993). Acta Cryst. C49, 1117–1120.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhisdavu, L., Kolp, B., von Zelewsky, A. & Stoeckli-Evans, H. (1999). Eur. J. Inorg. Chem. pp. 1271–1279.  Google Scholar
First citationGrushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495.  Web of Science CSD CrossRef Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647–6653.  CrossRef CAS Web of Science Google Scholar
First citationSteel, P. J. (1991). J. Organomet. Chem. 408, 395–402.  CSD CrossRef CAS Web of Science Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tysba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). J. Am. Chem. Soc. 125, 7377–7387.  Web of Science CSD CrossRef PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds