organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 9,10-endo-ethano-9,10-di­hydro­anthracene-11,11-di­carboxyl­ate

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 14 May 2004; accepted 20 May 2004; online 29 May 2004)

The title compound, C22H22O4, possesses normal geometrical parameters and the dihedral angle between the two benzene ring planes is 57.62 (5)°. The crystal packing is controlled by van der Waals forces and a possible C—H⋯O interaction, the latter resulting in a supramolecular C(6) motif.

Comment

The title compound, (I[link]) (Fig. 1[link]), was created as an intermediate in the synthesis of 2-methyl­ene malonic acid diethyl ester, (II[link]). The alkene produced in the absence of anthracene is very unstable and polymerizes easily. The presence of the anthracene acts to trap the monomer in a Diels–Alder reaction and purification of (I[link]) prior to thermolysis allows the generation of (II[link]) (by a retro-Diels–Alder reaction) in a much more stable form. The presence of excess maleic anhydride in this reaction ensures that the released anthracene is consumed by the formation of an anthracene-maleic anhydride adduct and is not free to regenerate (I[link]). Thus, this type of reaction may be useful in the trapping of alkenes and allow for easier purification.[link]

[Scheme 1]

The geometrical parameters for (I) are broadly similar to those of related 9,10-bridged anthracene derivatives (Table 1) (Gable et al., 1996[Gable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674-675.]; Karolak-Wojciechowska et al., 1998[Karolak-Wojciechowska, J., Trzeźwińska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905-911.]; Burrows et al., 1999[Burrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236-239.]). The two benzene rings in (I) (atoms C2–C7 and C9–C14) are both essentially planar (r.m.s. deviations from the least-squares planes are 0.010 and 0.001 Å, respectively). The dihedral angle between these rings is 57.62 (5)°, which is typical for these 9,10-bridged anthracene systems, e.g. the corresponding dihedral angle in 11,12-bis(N,N-di­methyl­amino­methyl)-9,10-di­hydro-9,10-ethano­anthracene (Karolak-Wojciechowska et al., 1998[Karolak-Wojciechowska, J., Trzeźwińska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905-911.]) is 58.8 (2)°. The three six-membered rings of the bicyclic core of (I[link]) (C1/C2/C7/C8/C9/C14, C1/C2/C7/C8/C15/C16 and C1/C14/C9/C8/C15/C16; see Fig. 1[link]) are all forced into boat forms. The ester substituents show no unusual features.

The only significant intermolecular interaction in (I[link]), as identified in a PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of the structure, is a C8—H8⋯O3i bond (Table 2[link]). This bridgehead H8 atom attached to an sp3-hybridized C atom may be slightly activated due to ring strain (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond. Oxford: IUCr/OUP.]). This connectivity results in C(6) chains (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), generated by n-glide symmetry (Fig. 2[link]). Otherwise, the crystal packing is controlled by van der Waals forces.

[Figure 1]
Figure 1
View of (I[link]) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius.
[Figure 2]
Figure 2
Detail of a chain of mol­ecules of (I[link]) linked by C—H⋯O interactions. [Symmetry codes: (i) as in Table 2[link]; (ii) x + 1, y, z + 1.]

Experimental

A round-bottomed flask was fitted with a still head and condenser and diethyl malonate (9.70 g, 9.2 ml, 61 mmol), anthracene (12.00 g, 67 mmol), paraform­aldehyde (3.64 g, 0.12 mol), copper(II) acetate monohydrate (0.60 g, 3.0 mmol), acetic acid (50 ml) and xyl­ene (50 ml) were quickly added. The reaction mixture was heated at 383 K for 15 h and a clear dark-green solution resulted. The temperature was increased in order to distil off the acetic acid, then the reaction mixture was cooled to room temperature and filtered under suction. The filtrate was retained and the xyl­ene evaporated on a rotary evaporator to yield a green oil which was left to crystallize. Purification was carried out by recrystallization from hot hexane. Filtration and washing with ice-cold hexane (25 ml) resulted in the pure anthracene adduct (I[link]) (14.72 g, 69%) as colourless plates [m.p. 404.5–405 K; literature (De Keyser et al., 1988[De Keyser, J.-L., De Cock, C. J. C., Poupaert, J. H. & Dumont, P. (1988). J. Org. Chem. 53, 4859-4862.]) 403–404 K from EtOH]; RF(hexane–propan-2-ol 50:1) 0.13; νmax (KBr disc)/cm−1: 2974 (C—H), 1732 (C=O), 1460–1446 (aromatic C=C) and 757 (4 adjacent Ar-H); δH (250 MHz; CDCl3): 1.15 (6H, t, J = 7.0 Hz, 2 × CH3), 2.47 [2H, d, J = 2.4 Hz, (EtO2C)2CCH2], 3.95–4.09 (4H, m, 2 × OCH2), 4.33 (1H, poorly resolved t, J = 2.4 Hz, Ar2CHCH2), 4.97 [1H, s, Ar2CHC(CO2Et)2] and 7.07–7.33 (8H, m, Ar-H); δC (CDCl3): 14.0, 36.4, 43.9, 49.6, 60.0, 61.7, 123.3, 125.7, [De Keyser et al. (1988[De Keyser, J.-L., De Cock, C. J. C., Poupaert, J. H. & Dumont, P. (1988). J. Org. Chem. 53, 4859-4862.]) give 125.68 and 125.74], 126.4, 139.8, 144.0 and 170.2.

Crystal data
  • C22H22O4

  • Mr = 350.40

  • Monoclinic, P21/n

  • a = 9.2424 (2) Å

  • b = 16.5210 (5) Å

  • c = 11.9154 (4) Å

  • β = 98.631 (2)°

  • V = 1798.80 (9) Å3

  • Z = 4

  • Dx = 1.294 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 21 198 reflections

  • θ = 2.9–27.5°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.28 × 0.20 × 0.03 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.976, Tmax = 0.999

  • 21 237 measured reflections

  • 3538 independent reflections

  • 2750 reflections with I > 2σ(I)

  • Rint = 0.120

  • θmax = 26.0°

  • h = −11 → 11

  • k = −20 → 20

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 1.06

  • 3538 reflections

  • 238 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0607P)2 + 0.8446P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.012 (3)

Table 1
Selected geometrical parameters (Å °)

C1—C16 1.576 (3)
C8—C15 1.550 (3)
C15—C16 1.559 (3)
C20—C16—C17—O2 −131.2 (2)
C17—C16—C20—O3 −109.9 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 1.00 2.56 3.380 (2) 139
Symmetry code: (i) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,{\script{1\over 2}}+z].

All H atoms were geometrically placed in idealized locations and refined as riding on their carrier C atoms with C—H distances set to 0.95, 0.98, 0.99 and 1.00 Å for aromatic, sp2, terminal sp3 and bridgehead sp3 hybrid C atoms, respectively. The constraint Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C) was applied as appropriate.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr andR. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I) (Fig. 1), was created as an intermediate in the synthesis of 2-methylene malonic acid diethyl ester, (II). The alkene produced in the absence of anthracene is very unstable and polymerizes easily. The presence of the anthracene acts to trap the monomer in a Diels–Alder reaction and purification of (I) prior to thermolysis allows the generation of (II) (by a retro-Diels–Alder reaction) in a much more stable form. The presence of excess maleic anhydride in this reaction ensures that the released anthracene is consumed in the formation of an anthracene-maleic anhydride adduct and is not free to regenerate (I). Thus, this type of reaction may be useful in the trapping of alkenes and allow for easier purification.

The crystal structures of 9,10-bridged anthracene derivatives are quite uncommon (Karolak-Wojciechowska et al., 1998), but (I) shows few significant geometrical differences to those reported so far. The two phenyl rings in (I) (atoms C1–C6 and C9–C14) are both essentially planar (r.m.s. deviation from the best least-squares planes = 0.010 and 0.001 Å, respectively). The dihedral angle between the C1–C6 and C9–C14 best planes is 57.62 (5)°, which is typical for these 9,10-bridged anthracene systems, e.g. the corresponding dihedral angle in 11,12-bis(N,N-dimethylaminomethyl)-9,10-dihydro-9,10-ethanoanthracene (Karolak-Wojciechowska et al., 1998) is 58.8 (2)°. The three fused six-membered rings in (I) (C1/C2/C7/C8/C9/C14, C1/C2/C7/C8/C15/C16 and C1/C14/C9/C8/C15/C16; see Fig. 1) are all forced into boat forms. The ester substituents show no unusual features.

The only significant intermolecular interaction in (I), as identified in a PLATON (Spek, 2003) analysis of the structure, is a C8—H8···O3i bond (Table 2). This bridgehead H8 atom attached to an sp3 hybridized C atom may be slightly activated due to ring strain (Desiraju & Steiner, 1999). This connectivity results in C(6) chains (Bernstein et al., 1995), generated by n-glide symmetry (Fig. 2). Otherwise, the crystal packing is controlled by van der Waals forces.

Experimental top

A round-bottomed flask was fitted with a still head and condenser and diethyl malonate (9.70 g, 9.2 ml, 61 mmol), anthracene (12.00 g, 67 mmol), paraformaldehyde (3.64 g, 0.12 mol), copper(II) acetate monohydrate (0.60 g, 3.0 mmol), acetic acid (50 ml) and xylene (50 ml) were quickly added. The reaction mixture was heated at 383 K for 15 h and a clear dark-green solution resulted. The temperature was increased in order to distil off the acetic acid, then the reaction mixture was cooled to room temperature and filtered under suction. The filtrate was retained and the xylene evaporated on a rotary evaporator to yield a green oil which was left to crystallize. Purification was carried out by recrystallization from hot hexane which resulted in needles suitable for single-crystal X-ray diffraction. Filtration and washing with ice-cold hexane (25 ml) resulted in the pure anthracene adduct (I) (14.72 g, 69%) as colourless needles [m.p. 404.5–405 K; literature (De Keyser et al., 1988) 403–404 K from EtOH]; RF(hexane–propan-2-ol 50:1) 0.13; νmax (KBr disc)/cm−1: 2974 (C—H), 1732 (CO), 1460–1446 (aromatic CC) and 757 (4 adjacent Ar—H); δH (250 MHz; CDCl3): 1.15 (6H, t, J = 7.0 Hz, 2 × CH3), 2.47 [2H, d, J = 2.4 Hz, (EtO2C)2CCH2], 3.95–4.09 (4H, m, 2 × OCH2), 4.33 (1H, poorly resolved t, J = 2.4 Hz, Ar2CHCH2), 4.97 [1H, s, Ar2CHC(CO2Et)2] and 7.07–7.33 (8H, m, Ar—H); δC (CDCl3): 14.0, 36.4, 43.9, 49.6, 60.0, 61.7, 123.3, 125.7, [De Keyser et al. (1988) give 125.68 and 125.74], 126.4, 139.8, 144.0 and 170.2.

Refinement top

All H atoms were geometrically placed in idealized locations and refined as riding on their carrier C atom with the constraint Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Detail of a chain of molecules of (I) linked by C—H···O interactions. [Symmetry codes: (i) as in Table 2; (ii) x + 1, y, z + 1.]
(I) top
Crystal data top
C22H22O4F(000) = 744
Mr = 350.40Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21198 reflections
a = 9.2424 (2) Åθ = 2.9–27.5°
b = 16.5210 (5) ŵ = 0.09 mm1
c = 11.9154 (4) ÅT = 120 K
β = 98.631 (2)°Plate, colourless
V = 1798.80 (9) Å30.28 × 0.20 × 0.03 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD
diffractometer
3538 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.120
ω and φ scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.976, Tmax = 0.999k = 2020
21237 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.8446P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3538 reflectionsΔρmax = 0.30 e Å3
238 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C22H22O4V = 1798.80 (9) Å3
Mr = 350.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2424 (2) ŵ = 0.09 mm1
b = 16.5210 (5) ÅT = 120 K
c = 11.9154 (4) Å0.28 × 0.20 × 0.03 mm
β = 98.631 (2)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
3538 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2750 reflections with I > 2σ(I)'
Tmin = 0.976, Tmax = 0.999Rint = 0.120
21237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3538 reflectionsΔρmin = 0.25 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0216 (2)0.24941 (11)0.79618 (16)0.0207 (4)
H10.00630.22660.71760.025*
C20.1800 (2)0.27254 (11)0.83512 (16)0.0221 (4)
C30.2947 (2)0.26234 (12)0.77362 (17)0.0267 (5)
H30.27850.23750.70090.032*
C40.4342 (2)0.28899 (13)0.81988 (18)0.0303 (5)
H40.51340.28280.77820.036*
C50.4574 (2)0.32439 (13)0.92616 (18)0.0306 (5)
H50.55260.34260.95680.037*
C60.3427 (2)0.33370 (12)0.98894 (17)0.0272 (5)
H60.35960.35721.06250.033*
C70.2032 (2)0.30808 (12)0.94241 (16)0.0237 (4)
C80.0657 (2)0.31482 (12)0.99611 (16)0.0234 (4)
H80.08440.34241.07160.028*
C90.0462 (2)0.35975 (12)0.91330 (16)0.0233 (4)
C100.1241 (2)0.42843 (12)0.93459 (18)0.0279 (5)
H100.10880.45281.00760.033*
C110.2248 (2)0.46132 (13)0.84820 (19)0.0314 (5)
H110.27820.50840.86220.038*
C120.2475 (2)0.42579 (13)0.74195 (18)0.0305 (5)
H120.31660.44870.68350.037*
C130.1706 (2)0.35706 (12)0.71985 (17)0.0247 (4)
H130.18660.33280.64670.030*
C140.0703 (2)0.32413 (11)0.80559 (16)0.0217 (4)
C150.0035 (2)0.22833 (12)1.00520 (16)0.0238 (4)
H15A0.09080.23121.03490.029*
H15B0.07250.19581.05870.029*
C160.0199 (2)0.18699 (11)0.88621 (15)0.0210 (4)
C170.0766 (2)0.11174 (12)0.88462 (15)0.0220 (4)
C180.1230 (2)0.00151 (13)0.77158 (19)0.0327 (5)
H18A0.06150.03900.72010.039*
H18B0.15010.02900.84560.039*
C190.2581 (3)0.01865 (16)0.7228 (2)0.0473 (6)
H19A0.30880.03140.70790.071*
H19B0.32270.05210.77670.071*
H19C0.23140.04850.65160.071*
C200.1775 (2)0.15905 (12)0.85190 (16)0.0219 (4)
C210.3694 (2)0.08520 (17)0.9188 (2)0.0441 (6)
H21A0.37100.02530.91660.053*
H21B0.42230.10560.84580.053*
C220.4421 (3)0.11405 (15)1.0129 (2)0.0402 (6)
H22A0.54320.09441.00260.060*
H22B0.44190.17341.01390.060*
H22C0.38950.09371.08490.060*
O10.03986 (15)0.07194 (8)0.78719 (12)0.0287 (4)
O20.17203 (16)0.09130 (9)0.95894 (12)0.0321 (4)
O30.25370 (15)0.17464 (9)0.76424 (12)0.0333 (4)
O40.21870 (16)0.11370 (10)0.93410 (12)0.0366 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (9)0.0208 (10)0.0182 (9)0.0013 (8)0.0025 (7)0.0005 (7)
C20.0247 (10)0.0175 (10)0.0242 (10)0.0001 (8)0.0043 (8)0.0042 (8)
C30.0307 (11)0.0228 (11)0.0270 (11)0.0004 (8)0.0062 (8)0.0043 (8)
C40.0245 (10)0.0291 (12)0.0387 (12)0.0025 (9)0.0092 (9)0.0099 (9)
C50.0236 (10)0.0271 (12)0.0396 (12)0.0024 (8)0.0000 (9)0.0078 (9)
C60.0293 (11)0.0217 (10)0.0284 (11)0.0013 (8)0.0032 (8)0.0022 (8)
C70.0245 (10)0.0199 (10)0.0258 (10)0.0004 (8)0.0014 (8)0.0019 (8)
C80.0244 (10)0.0248 (10)0.0205 (10)0.0030 (8)0.0020 (8)0.0038 (8)
C90.0230 (10)0.0233 (10)0.0239 (10)0.0035 (8)0.0047 (7)0.0001 (8)
C100.0272 (11)0.0248 (11)0.0325 (11)0.0048 (8)0.0068 (8)0.0069 (9)
C110.0277 (11)0.0226 (11)0.0446 (13)0.0022 (9)0.0078 (9)0.0013 (9)
C120.0275 (11)0.0268 (12)0.0368 (12)0.0011 (9)0.0034 (9)0.0064 (9)
C130.0244 (10)0.0236 (11)0.0257 (10)0.0036 (8)0.0020 (8)0.0014 (8)
C140.0214 (10)0.0193 (10)0.0248 (10)0.0044 (8)0.0049 (8)0.0007 (8)
C150.0257 (10)0.0266 (11)0.0193 (10)0.0003 (8)0.0036 (8)0.0001 (8)
C160.0221 (10)0.0209 (10)0.0196 (9)0.0001 (7)0.0022 (7)0.0006 (7)
C170.0213 (9)0.0221 (10)0.0229 (10)0.0035 (8)0.0044 (8)0.0012 (8)
C180.0334 (12)0.0214 (11)0.0428 (13)0.0066 (9)0.0039 (10)0.0087 (9)
C190.0495 (15)0.0438 (15)0.0524 (15)0.0110 (12)0.0203 (12)0.0001 (12)
C200.0232 (10)0.0199 (10)0.0232 (10)0.0018 (8)0.0053 (8)0.0031 (8)
C210.0316 (13)0.0571 (16)0.0457 (14)0.0259 (11)0.0128 (10)0.0100 (12)
C220.0332 (12)0.0418 (14)0.0464 (14)0.0044 (10)0.0083 (10)0.0025 (11)
O10.0286 (8)0.0245 (8)0.0319 (8)0.0049 (6)0.0005 (6)0.0079 (6)
O20.0312 (8)0.0340 (9)0.0294 (8)0.0072 (6)0.0010 (6)0.0024 (6)
O30.0283 (8)0.0345 (9)0.0339 (8)0.0054 (6)0.0065 (6)0.0042 (6)
O40.0305 (8)0.0487 (10)0.0306 (8)0.0174 (7)0.0043 (6)0.0057 (7)
Geometric parameters (Å, º) top
C1—C141.512 (3)C13—C141.384 (3)
C1—C21.516 (3)C13—H130.9500
C1—C161.576 (3)C15—C161.559 (3)
C1—H11.0000C15—H15A0.9900
C2—C31.387 (3)C15—H15B0.9900
C2—C71.394 (3)C16—C201.524 (3)
C3—C41.395 (3)C16—C171.532 (3)
C3—H30.9500C17—O21.201 (2)
C4—C51.382 (3)C17—O11.333 (2)
C4—H40.9500C18—O11.463 (2)
C5—C61.395 (3)C18—C191.492 (3)
C5—H50.9500C18—H18A0.9900
C6—C71.391 (3)C18—H18B0.9900
C6—H60.9500C19—H19A0.9800
C7—C81.510 (3)C19—H19B0.9800
C8—C91.513 (3)C19—H19C0.9800
C8—C151.550 (3)C20—O31.197 (2)
C8—H81.0000C20—O41.333 (2)
C9—C101.387 (3)C21—O41.455 (2)
C9—C141.399 (3)C21—C221.470 (3)
C10—C111.390 (3)C21—H21A0.9900
C10—H100.9500C21—H21B0.9900
C11—C121.383 (3)C22—H22A0.9800
C11—H110.9500C22—H22B0.9800
C12—C131.386 (3)C22—H22C0.9800
C12—H120.9500
C14—C1—C2107.37 (15)C13—C14—C1126.00 (17)
C14—C1—C16106.66 (15)C9—C14—C1113.45 (16)
C2—C1—C16106.21 (14)C8—C15—C16110.04 (15)
C14—C1—H1112.1C8—C15—H15A109.7
C2—C1—H1112.1C16—C15—H15A109.7
C16—C1—H1112.1C8—C15—H15B109.7
C3—C2—C7120.74 (18)C16—C15—H15B109.7
C3—C2—C1125.96 (18)H15A—C15—H15B108.2
C7—C2—C1113.29 (16)C20—C16—C17106.61 (15)
C2—C3—C4119.17 (19)C20—C16—C15111.94 (15)
C2—C3—H3120.4C17—C16—C15111.39 (15)
C4—C3—H3120.4C20—C16—C1109.64 (15)
C5—C4—C3120.18 (19)C17—C16—C1108.70 (15)
C5—C4—H4119.9C15—C16—C1108.50 (15)
C3—C4—H4119.9O2—C17—O1124.51 (18)
C4—C5—C6120.81 (19)O2—C17—C16125.72 (17)
C4—C5—H5119.6O1—C17—C16109.77 (15)
C6—C5—H5119.6O1—C18—C19110.52 (18)
C7—C6—C5119.10 (19)O1—C18—H18A109.5
C7—C6—H6120.4C19—C18—H18A109.5
C5—C6—H6120.4O1—C18—H18B109.5
C6—C7—C2119.98 (18)C19—C18—H18B109.5
C6—C7—C8126.67 (18)H18A—C18—H18B108.1
C2—C7—C8113.34 (16)C18—C19—H19A109.5
C7—C8—C9107.23 (15)C18—C19—H19B109.5
C7—C8—C15107.81 (16)H19A—C19—H19B109.5
C9—C8—C15105.88 (15)C18—C19—H19C109.5
C7—C8—H8111.9H19A—C19—H19C109.5
C9—C8—H8111.9H19B—C19—H19C109.5
C15—C8—H8111.9O3—C20—O4124.48 (18)
C10—C9—C14119.77 (18)O3—C20—C16125.63 (18)
C10—C9—C8127.21 (18)O4—C20—C16109.88 (16)
C14—C9—C8113.00 (17)O4—C21—C22109.74 (19)
C9—C10—C11119.48 (19)O4—C21—H21A109.7
C9—C10—H10120.3C22—C21—H21A109.7
C11—C10—H10120.3O4—C21—H21B109.7
C12—C11—C10120.33 (19)C22—C21—H21B109.7
C12—C11—H11119.8H21A—C21—H21B108.2
C10—C11—H11119.8C21—C22—H22A109.5
C11—C12—C13120.67 (19)C21—C22—H22B109.5
C11—C12—H12119.7H22A—C22—H22B109.5
C13—C12—H12119.7C21—C22—H22C109.5
C14—C13—C12119.20 (18)H22A—C22—H22C109.5
C14—C13—H13120.4H22B—C22—H22C109.5
C12—C13—H13120.4C17—O1—C18116.73 (15)
C13—C14—C9120.55 (18)C20—O4—C21117.59 (17)
C14—C1—C2—C3125.2 (2)C2—C1—C14—C13126.6 (2)
C16—C1—C2—C3121.0 (2)C16—C1—C14—C13119.9 (2)
C14—C1—C2—C753.7 (2)C2—C1—C14—C953.7 (2)
C16—C1—C2—C760.1 (2)C16—C1—C14—C959.8 (2)
C7—C2—C3—C40.7 (3)C7—C8—C15—C1655.1 (2)
C1—C2—C3—C4178.10 (18)C9—C8—C15—C1659.4 (2)
C2—C3—C4—C50.6 (3)C8—C15—C16—C20123.56 (17)
C3—C4—C5—C60.3 (3)C8—C15—C16—C17117.18 (17)
C4—C5—C6—C71.1 (3)C8—C15—C16—C12.4 (2)
C5—C6—C7—C21.0 (3)C14—C1—C16—C2066.91 (18)
C5—C6—C7—C8178.54 (18)C2—C1—C16—C20178.79 (15)
C3—C2—C7—C60.1 (3)C14—C1—C16—C17176.91 (14)
C1—C2—C7—C6179.02 (17)C2—C1—C16—C1762.61 (18)
C3—C2—C7—C8179.51 (17)C14—C1—C16—C1555.63 (19)
C1—C2—C7—C80.5 (2)C2—C1—C16—C1558.68 (19)
C6—C7—C8—C9124.7 (2)C20—C16—C17—O2131.2 (2)
C2—C7—C8—C954.8 (2)C15—C16—C17—O28.8 (3)
C6—C7—C8—C15121.7 (2)C1—C16—C17—O2110.7 (2)
C2—C7—C8—C1558.8 (2)C20—C16—C17—O149.30 (19)
C7—C8—C9—C10126.4 (2)C15—C16—C17—O1171.68 (15)
C15—C8—C9—C10118.7 (2)C1—C16—C17—O168.82 (19)
C7—C8—C9—C1454.7 (2)C17—C16—C20—O3109.9 (2)
C15—C8—C9—C1460.2 (2)C15—C16—C20—O3128.1 (2)
C14—C9—C10—C110.3 (3)C1—C16—C20—O37.6 (3)
C8—C9—C10—C11179.15 (19)C17—C16—C20—O469.68 (19)
C9—C10—C11—C120.2 (3)C15—C16—C20—O452.4 (2)
C10—C11—C12—C130.0 (3)C1—C16—C20—O4172.83 (15)
C11—C12—C13—C140.0 (3)O2—C17—O1—C180.0 (3)
C12—C13—C14—C90.2 (3)C16—C17—O1—C18179.50 (16)
C12—C13—C14—C1179.54 (18)C19—C18—O1—C1786.8 (2)
C10—C9—C14—C130.3 (3)O3—C20—O4—C213.8 (3)
C8—C9—C14—C13179.30 (17)C16—C20—O4—C21176.68 (17)
C10—C9—C14—C1179.41 (17)C22—C21—O4—C20121.4 (2)
C8—C9—C14—C10.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i1.002.563.380 (2)139
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H22O4
Mr350.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.2424 (2), 16.5210 (5), 11.9154 (4)
β (°) 98.631 (2)
V3)1798.80 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.20 × 0.03
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.976, 0.999
No. of measured, independent and
observed [I > 2σ(I)'] reflections
21237, 3538, 2750
Rint0.120
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.06
No. of reflections3538
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: COLLECT (Nonius, 1998), COLLECT and DENZO (Otwinowski & Minor, 1997), COLLECT and DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected torsion angles (º) top
C20—C16—C17—O2131.2 (2)C17—C16—C20—O3109.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i1.002.563.380 (2)139
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals
First citationBurrows, L., Masnovi, J. & Baker, R. J. (1999). Acta Cryst. C55, 236–239. Web of Science CSD CrossRef CAS IUCr Journals
First citationDe Keyser, J.-L., De Cock, C. J. C., Poupaert, J. H. & Dumont, P. (1988). J. Org. Chem. 53, 4859–4862.  CrossRef CAS Web of Science
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydro­gen Bond. Oxford: IUCr/OUP.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals
First citationGable, R. W., Qureshi, A. & Schiesser, C. H. (1996). Acta Cryst. C52, 674–675. CSD CrossRef CAS Web of Science IUCr Journals
First citationKarolak-Wojciechowska, J., Trzeźwińska, H. B., Alibert-Franco, S., Santelli-Rouvier, C. & Barbe, J. (1998). J. Chem. Crystallogr. 28, 905–911. Web of Science CSD CrossRef CAS
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr andR. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds