organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

DL-Histidine DL-tartrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Greenwich, Medway Campus, Anson, Chatham Maritime, Kent ME4 4TB, England, and bPfizer Ltd, IPC 049, Ramsgate Road, Sandwich, Kent CT13 9NJ, England
*Correspondence e-mail: matthew_johnson@sandwich.pfizer.com

(Received 11 June 2004; accepted 23 June 2004; online 30 June 2004)

The crystal structure of DL-histidine DL-tartrate, C6H10N3O2+·C4H5O6, has been determined as part of an ongoing study of the fundamental effects of chirality on salt formation and hydrates. Discrete single-enantiomer chains of histidine are linked in two dimensions by hydrogen bonds to a racemic pair of tartrate mol­ecules.

Comment

This study was undertaken to identify the effects of chirality on the formation of salts, specifically the way chirality may affect hydration, as a result of interactions between a chiral drug and a chiral counter-ion. DL-Histidine and DL-tartrate samples were purchased from Fluka and used in the crystallization. The asymmetric unit of the title compound, (I[link]), contains one mol­ecule of histidine as a monocation (proton­ated at the amine and imidazole N atoms and deprotonated at the carboxyl­ic acid) and the tartrate as a monoanion (Fig. 1[link]).[link]

[Scheme 1]

The histidines form chains of single enantiomers (Fig. 2[link]) linked along the b axis by hydrogen bonds from the NH group of the imidazole ring to a carboxyl O atom of the next histidine, similar to those described by Suresh & Vijayan (1987[Suresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13.]). The tartrate anions form dimers containing one D- and one L-tartrate ion in each pair (Fig. 2[link]). The dimers are formed by means of a carboxyl­ic acid O atom bonding to a neighbouring tartrate utilizing a side OH group [2.817 (2) Å]. Each histidine mol­ecule in a chain is linked to the next chain below (viewed down the a axis in Fig. 2[link]) by a single hydrogen bond from a carboxyl O atom to an NH group of the ammonium group [2.749 (2) Å]. The tartrates link the chains of histidine in two dimensions to create a three-dimensional hydrogen-bond network.

[Figure 1]
Figure 1
ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) plot of the asymmetric unit of (I[link]) (Z = 4), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Hydro­gen-bonding motifs for D-tartrate (green), L-histidine (yellow), D-histidine (blue) and L-tartrate (pink).

Experimental

A 5 ml saturated aqueous solution of DL-histidine was mixed with a 5 ml saturated aqueous solution of DL-tartaric acid and the vial was covered with a pierced film. This was placed in a larger glass vial containing 25 ml of methanol, sealed, and allowed to stand for three weeks at room temperature.

Crystal data
  • C6H10N3O2+·C4H5O6

  • Mr = 305.25

  • Monoclinic, P21/c

  • a = 4.9695 (5) Å

  • b = 13.4392 (12) Å

  • c = 19.2749 (18) Å

  • β = 90.253 (2)°

  • V = 1287.3 (2) Å3

  • Z = 4

  • Dx = 1.575 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2967 reflections

  • θ = 1.9–28.0°

  • μ = 0.14 mm−1

  • T = 295 (2) K

  • Needle, colourless

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.843, Tmax = 0.990

  • 7512 measured reflections

  • 2967 independent reflections

  • 2207 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 28.0°

  • h = −6 → 6

  • k = −17 → 17

  • l = −25 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.02

  • 2967 reflections

  • 194 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0666P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O8 0.86 1.93 2.7689 (19) 166
N1—H1⋯O2i 0.86 1.84 2.6871 (19) 169
N3—H3A⋯O2ii 0.89 1.87 2.7532 (18) 173
N3—H3B⋯O7iii 0.89 2.09 2.7937 (18) 135
N3—H3B⋯O6iii 0.89 2.35 3.1374 (18) 147
N3—H3C⋯O7ii 0.89 1.85 2.7178 (18) 164
O3—H3D⋯O1iv 0.82 1.77 2.5856 (17) 173
O5—H5A⋯O4v 0.82 2.11 2.8174 (19) 145
O5—H5A⋯O4 0.82 2.30 2.7015 (19) 111
O6—H6⋯O8vi 0.82 1.92 2.7152 (18) 162
Symmetry codes: (i) [1-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z]; (ii) x-1,y,z; (iii) 1-x,1-y,1-z; (iv) [1+x,{\script{3\over 2}}-y,z-{\script{1\over 2}}]; (v) 2-x,2-y,1-z; (vi) 1+x,y,z.

The unit-cell dimensions and angles were compared to those reported for the parent histidine enantiomers by Edington & Harding (1974[Edington, P. & Harding, M. M. (1974). Acta Cryst. B30, 204-206.]) and Madden et al. (1972[Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382-2389.]). All H atoms were placed geometric­ally [C—H = 0.93–0.98, N—H = 0.86–0.89 and O—H = 0.82 Å; Uiso(H) = 1.2 or 1.5 times Ueq(parent atom)] and refined using a riding model.

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Materials Studio (Accelrys, 2001[Accelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Materials Studio (Accelrys, 2001); software used to prepare material for publication: SHELXL97.

(I) top
Crystal data top
C6H10N3O2+·C4H5O6F(000) = 640
Mr = 305.25Dx = 1.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2967 reflections
a = 4.9695 (5) Åθ = 1.9–28.0°
b = 13.4392 (12) ŵ = 0.14 mm1
c = 19.2749 (18) ÅT = 295 K
β = 90.253 (2)°Needle, colourless
V = 1287.3 (2) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2967 independent reflections
Radiation source: fine-focus sealed tube2207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 67 pixels mm-1θmax = 28.0°, θmin = 1.9°
Thin–slice ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997; Blessing, 1995)
k = 1717
Tmin = 0.843, Tmax = 0.990l = 2525
7512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1685 (3)0.73187 (12)0.66501 (9)0.0318 (4)
C20.2198 (4)0.77519 (13)0.72645 (10)0.0386 (4)
H20.13420.76100.76810.046*
C30.4909 (4)0.84349 (13)0.65168 (10)0.0372 (4)
H30.62240.88360.63190.045*
C40.0369 (4)0.65675 (12)0.64434 (10)0.0358 (4)
H4A0.13900.68240.60520.043*
H4B0.16090.64730.68250.043*
C50.0819 (3)0.55634 (11)0.62459 (9)0.0298 (4)
H50.22380.56640.59010.036*
C60.1981 (3)0.49876 (11)0.68674 (8)0.0286 (4)
C70.8407 (4)0.92923 (12)0.38923 (9)0.0392 (4)
C80.6893 (4)0.85823 (12)0.43616 (9)0.0376 (4)
H80.49900.87730.43720.045*
C90.7135 (3)0.75243 (11)0.40876 (8)0.0281 (4)
H90.60040.74730.36710.034*
C100.6010 (3)0.67992 (12)0.46299 (8)0.0273 (3)
N10.4190 (3)0.84348 (11)0.71715 (8)0.0377 (4)
H10.48680.88070.74910.045*
N20.3426 (3)0.77602 (10)0.61863 (8)0.0364 (4)
H2A0.35330.76210.57520.044*
N30.1363 (3)0.49502 (9)0.59342 (7)0.0282 (3)
H3A0.26520.48540.62460.042*
H3B0.06980.43650.58030.042*
H3C0.20460.52640.55670.042*
O10.0532 (3)0.48152 (10)0.73684 (7)0.0461 (4)
O20.4328 (3)0.46847 (11)0.68080 (7)0.0495 (4)
O30.7603 (3)0.92187 (10)0.32456 (7)0.0481 (4)
H3D0.86070.95430.29960.072*
O41.0095 (3)0.98561 (11)0.41035 (7)0.0591 (4)
O50.7946 (4)0.85996 (10)0.50444 (7)0.0601 (5)
H5A0.86500.91410.51190.090*
O60.9796 (2)0.72979 (9)0.38935 (6)0.0358 (3)
H61.07530.72740.42410.054*
O70.7460 (3)0.60922 (9)0.48094 (6)0.0404 (3)
O80.3696 (2)0.69787 (9)0.48593 (6)0.0373 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0383 (9)0.0256 (8)0.0315 (9)0.0024 (7)0.0027 (7)0.0006 (7)
C20.0436 (10)0.0401 (10)0.0320 (9)0.0066 (8)0.0008 (8)0.0019 (7)
C30.0361 (9)0.0333 (9)0.0423 (11)0.0002 (7)0.0060 (8)0.0009 (8)
C40.0367 (10)0.0292 (8)0.0412 (10)0.0039 (7)0.0063 (8)0.0017 (7)
C50.0297 (8)0.0269 (8)0.0327 (9)0.0001 (6)0.0035 (7)0.0009 (7)
C60.0304 (9)0.0273 (8)0.0279 (8)0.0006 (7)0.0017 (7)0.0003 (6)
C70.0551 (11)0.0276 (9)0.0348 (10)0.0012 (8)0.0075 (9)0.0001 (7)
C80.0510 (11)0.0294 (9)0.0326 (9)0.0001 (8)0.0089 (8)0.0012 (7)
C90.0297 (8)0.0304 (8)0.0241 (8)0.0012 (6)0.0000 (6)0.0001 (6)
C100.0312 (9)0.0283 (8)0.0224 (8)0.0025 (7)0.0038 (6)0.0038 (6)
N10.0421 (9)0.0369 (8)0.0343 (8)0.0071 (6)0.0015 (7)0.0104 (6)
N20.0470 (9)0.0360 (8)0.0263 (7)0.0054 (6)0.0017 (6)0.0049 (6)
N30.0316 (7)0.0257 (7)0.0272 (7)0.0007 (5)0.0008 (6)0.0008 (5)
O10.0492 (8)0.0501 (8)0.0392 (8)0.0112 (6)0.0127 (6)0.0072 (6)
O20.0344 (7)0.0703 (9)0.0438 (8)0.0153 (6)0.0063 (6)0.0235 (7)
O30.0602 (9)0.0482 (8)0.0358 (8)0.0120 (7)0.0006 (6)0.0124 (6)
O40.0872 (12)0.0490 (8)0.0411 (8)0.0283 (8)0.0049 (8)0.0044 (7)
O50.1103 (13)0.0425 (8)0.0275 (7)0.0259 (8)0.0044 (8)0.0045 (6)
O60.0343 (7)0.0434 (7)0.0297 (6)0.0033 (5)0.0052 (5)0.0001 (5)
O70.0489 (7)0.0368 (7)0.0354 (7)0.0086 (6)0.0026 (6)0.0093 (5)
O80.0314 (7)0.0471 (7)0.0335 (7)0.0024 (5)0.0036 (5)0.0007 (5)
Geometric parameters (Å, º) top
C1—C21.343 (3)C7—C81.517 (2)
C1—N21.381 (2)C8—O51.414 (2)
C1—C41.489 (2)C8—C91.522 (2)
C2—N11.362 (2)C8—H80.9800
C2—H20.9300C9—O61.4092 (19)
C3—N11.313 (2)C9—C101.536 (2)
C3—N21.329 (2)C9—H90.9800
C3—H30.9300C10—O71.2407 (19)
C4—C51.522 (2)C10—O81.2574 (19)
C4—H4A0.9700N1—H10.8600
C4—H4B0.9700N2—H2A0.8600
C5—N31.487 (2)N3—H3A0.8900
C5—C61.537 (2)N3—H3B0.8900
C5—H50.9800N3—H3C0.8900
C6—O11.229 (2)O3—H3D0.8200
C6—O21.241 (2)O5—H5A0.8200
C7—O41.200 (2)O6—H60.8200
C7—O31.311 (2)
C2—C1—N2105.53 (15)C7—C8—C9109.92 (14)
C2—C1—C4131.08 (17)O5—C8—H8109.2
N2—C1—C4123.29 (15)C7—C8—H8109.2
C1—C2—N1108.13 (16)C9—C8—H8109.2
C1—C2—H2125.9O6—C9—C8111.69 (14)
N1—C2—H2125.9O6—C9—C10112.87 (13)
N1—C3—N2107.93 (15)C8—C9—C10109.09 (13)
N1—C3—H3126.0O6—C9—H9107.7
N2—C3—H3126.0C8—C9—H9107.7
C1—C4—C5113.69 (14)C10—C9—H9107.7
C1—C4—H4A108.8O7—C10—O8125.43 (15)
C5—C4—H4A108.8O7—C10—C9117.58 (14)
C1—C4—H4B108.8O8—C10—C9116.99 (14)
C5—C4—H4B108.8C3—N1—C2109.12 (15)
H4A—C4—H4B107.7C3—N1—H1125.4
N3—C5—C4108.02 (13)C2—N1—H1125.4
N3—C5—C6107.87 (12)C3—N2—C1109.29 (14)
C4—C5—C6113.34 (14)C3—N2—H2A125.4
N3—C5—H5109.2C1—N2—H2A125.4
C4—C5—H5109.2C5—N3—H3A109.5
C6—C5—H5109.2C5—N3—H3B109.5
O1—C6—O2124.38 (16)H3A—N3—H3B109.5
O1—C6—C5119.22 (15)C5—N3—H3C109.5
O2—C6—C5116.30 (14)H3A—N3—H3C109.5
O4—C7—O3125.44 (16)H3B—N3—H3C109.5
O4—C7—C8122.86 (17)C7—O3—H3D109.5
O3—C7—C8111.69 (16)C8—O5—H5A109.5
O5—C8—C7111.23 (15)C9—O6—H6109.5
O5—C8—C9107.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O80.861.932.7689 (19)166
N1—H1···O2i0.861.842.6871 (19)169
N3—H3A···O2ii0.891.872.7532 (18)173
N3—H3B···O7iii0.892.092.7937 (18)135
N3—H3B···O6iii0.892.353.1374 (18)147
N3—H3C···O7ii0.891.852.7178 (18)164
O3—H3D···O1iv0.821.772.5856 (17)173
O5—H5A···O4v0.822.112.8174 (19)145
O5—H5A···O40.822.302.7015 (19)111
O6—H6···O8vi0.821.922.7152 (18)162
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+3/2, z1/2; (v) x+2, y+2, z+1; (vi) x+1, y, z.
 

References

First citationAccelrys (2001). Materials Studio. Accelrys Inc., San Diego, CA, USA.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEdington, P. & Harding, M. M. (1974). Acta Cryst. B30, 204–206.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMadden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1994). SMART (Version 5.622) and SAINT (Version 6.02). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSuresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13.  CrossRef Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds