organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-Butyl-4,6-di­nitro­phenol

CROSSMARK_Color_square_no_text.svg

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 10 June 2004; accepted 29 June 2004; online 9 July 2004)

The structure of the title compound, C10H12N2O5, has been determined and is found to have an intramolecular hydrogen bond between the phenol group and one of the 6-nitro O atoms. The mol­ecule packs in a zigzag hydrogen-bonded chain, consisting of an intermolecular hydrogen bond, parallel to the c axis, between the phenol group and a 4-nitro O atom. The dihedral angle between adjacent molecules in the chain is 82 (3)°.

Comment

The title compound, (I[link]), was first prepared in 1938 (Ipatieff et al., 1938[Ipatieff, V. N., Pines, H. & Friedman, B. S. (1938). J. Am. Chem. Soc. 60, 2495-2497.]) by the nitration of 2,4-di-tert-butyl­phenol, with cleavage of the 4-tert-butyl group. It was later found that (I[link]) could also be prepared by the nitration of 2,6-di-tert-butyl­phenol, with cleavage of the 6-tert-butyl group (Hart & Cassis, 1951[Hart, H. & Cassis, F. A. Jr (1951). J. Org. Chem. 73, 3179-3182.]). Attempts by Hart and Cassis at nitration without cleavage yielded small quantities of 3,3′,5,5′-tetra-tert-butyl-p-dipheno­quinone. The Cambridge Structural Database (Version of April 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals only one structure of a mol­ecule similar to (I[link]), that being musk ambrette, 4-tert-butyl-3-methoxy-2,6-di­nitro­toluene (De Ridder et al., 1990[De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 468-470.]). In a series of studies to prepare organic salts of 2,6-disubstituted phenols, such as the title compound and 2,6-di-tert-butyl-4-nitro­phenol, with simple organic bases, we characterized the structure of the title compound and report it here.[link]

[Scheme 1]

Compound (I[link]) exists with an intramolecular hydrogen bond between the phenol group and one of the 6-nitro O atoms (Fig. 1[link]) and packs in a zigzag hydrogen-bonded chain, parallel to the c axis, consisting of an intermolecular hydrogen bond between the phenol group and a 4-nitro O atom (Fig. 2[link]). Hydro­gen-bonding associations are listed in Table 1[link] and the dihedral angle between adjacent molecules in the chain is 82 (3)°.

[Figure 1]
Figure 1
The molecular structure (ORTEP-3; Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bond.
[Figure 2]
Figure 2
Packing diagram for (I[link]). [Symmetry code: (i) x, ½ − y, z − ½.] Dashed lines indicate intermolecular hydrogen bonds.

Experimental

The title compound, (I[link]), was obtained from Key Organics Ltd. Crystals of (I[link]) were grown from a methanol solution.

Crystal data
  • C10H12N2O5

  • Mr = 240.22

  • Monoclinic, P21/c

  • a = 9.974 (2) Å

  • b = 10.575 (2) Å

  • c = 11.547 (2) Å

  • β = 112.90 (3)°

  • V = 1122.0 (4) Å3

  • Z = 4

  • Dx = 1.422 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 52 reflections

  • θ = 4.3–18.1°

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • Needle, yellow

  • 0.20 × 0.06 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 5908 measured reflections

  • 5912 independent reflections

  • 4502 reflections with I > 2σ(I)

  • Rint = 0.070

  • θmax = 25.0°

  • h = −11 → 11

  • k = −12 → 12

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.165

  • S = 1.04

  • 5912 reflections

  • 160 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1108P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.027

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.033 (5)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O62 0.82 1.85 2.5743 (17) 146
O11—H11⋯O42i 0.82 2.42 2.8926 (19) 118
Symmetry code: (i) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}].

All H atoms were included in the refinement at calculated positions in the riding-model approximation, with C—H distances of 0.93 (aromatic H atoms) and 0.96 Å (CH3 H atoms), and O—H distance of 0.82 Å. The isotropic displacement parameters were set equal to 1.5Ueq of the carrier atom for the methyl groups and 1.2Ueq of the carrier for aromatic CH and hydroxyl OH groups. Crystals of (I[link]) were twinned with two nearly equal components related by a 180° rotation about the [100] reciprocal lattice direction. Combined data with complete or no overlap were used for refinement, and the twinning prevented merging of equivalent reflections before refinement. The partially overlapped reflections were rejected, resulting in a low data-completeness value of 89.9%.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]), and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLUTON94 (Spek, 1994[Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997), and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON94 (Spek, 1994); software used to prepare material for publication: SHELXL97.

2-tert-Butyl-4,6-dinitrophenol top
Crystal data top
C10H12N2O5F(000) = 504
Mr = 240.22Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 52 reflections
a = 9.974 (2) Åθ = 4.3–18.1°
b = 10.575 (2) ŵ = 0.12 mm1
c = 11.547 (2) ÅT = 120 K
β = 112.90 (3)°Plate, yellow
V = 1122.0 (4) Å30.20 × 0.06 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
4502 reflections with I > 2σ(I)
Radiation source: Bruker–Nonius FR591 rotating anodeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 2.7°
Detector resolution: 9.091 pixels mm-1h = 1111
φ and ω scansk = 1212
5908 measured reflectionsl = 1212
5912 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.1108P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.027
5912 reflectionsΔρmax = 0.36 e Å3
160 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08422 (16)0.24756 (16)0.01103 (17)0.0175 (4)
O110.08686 (12)0.34527 (12)0.06166 (12)0.0252 (4)
H110.00590.37780.09180.038*
C20.21649 (17)0.17828 (16)0.07515 (17)0.0167 (4)
C210.35876 (16)0.21422 (16)0.05852 (18)0.0199 (5)
C220.33651 (18)0.19937 (18)0.08108 (18)0.0273 (5)
H22A0.25820.25300.13220.041*
H22B0.31330.11290.10640.041*
H22C0.42420.22290.09130.041*
C230.40487 (19)0.35174 (18)0.1040 (2)0.0311 (5)
H23A0.49390.37180.09440.047*
H23B0.41930.35910.19090.047*
H23C0.32990.40930.05470.047*
C240.48590 (18)0.12544 (18)0.1379 (2)0.0291 (5)
H24A0.46010.03930.11300.044*
H24B0.50400.13490.22540.044*
H24C0.57200.14740.12430.044*
C30.21111 (17)0.07892 (16)0.15038 (17)0.0182 (4)
H30.29460.03130.19150.022*
C40.08200 (17)0.04759 (15)0.16662 (18)0.0187 (4)
N410.08388 (15)0.05678 (14)0.25181 (15)0.0225 (4)
O410.18873 (14)0.13023 (13)0.28710 (14)0.0362 (4)
O420.02105 (13)0.06679 (11)0.28282 (13)0.0284 (4)
C50.04623 (18)0.11166 (16)0.10471 (17)0.0176 (4)
H50.13110.08980.11520.021*
C60.04398 (16)0.20999 (15)0.02624 (17)0.0179 (4)
N610.18396 (15)0.27369 (15)0.04410 (15)0.0231 (4)
O610.29647 (11)0.22493 (13)0.04595 (12)0.0320 (4)
O620.18238 (12)0.37669 (12)0.09758 (13)0.0306 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0198 (9)0.0146 (9)0.0188 (12)0.0009 (9)0.0085 (8)0.0030 (8)
O110.0178 (6)0.0247 (8)0.0322 (9)0.0036 (6)0.0087 (6)0.0090 (6)
C20.0177 (9)0.0173 (9)0.0157 (12)0.0001 (8)0.0071 (8)0.0029 (8)
C210.0120 (8)0.0214 (10)0.0258 (13)0.0017 (8)0.0067 (8)0.0004 (8)
C220.0183 (9)0.0354 (12)0.0305 (14)0.0011 (9)0.0122 (9)0.0051 (9)
C230.0267 (10)0.0317 (12)0.0373 (15)0.0066 (10)0.0151 (10)0.0009 (10)
C240.0185 (10)0.0364 (12)0.0338 (14)0.0041 (9)0.0118 (9)0.0052 (9)
C30.0154 (9)0.0186 (10)0.0180 (12)0.0030 (8)0.0036 (8)0.0051 (7)
C40.0212 (9)0.0140 (9)0.0214 (12)0.0030 (8)0.0088 (8)0.0044 (8)
N410.0255 (8)0.0208 (8)0.0196 (11)0.0044 (8)0.0072 (8)0.0028 (7)
O410.0333 (8)0.0328 (8)0.0439 (11)0.0107 (7)0.0163 (7)0.0148 (7)
O420.0298 (7)0.0277 (7)0.0330 (9)0.0074 (6)0.0180 (7)0.0012 (6)
C50.0168 (9)0.0208 (10)0.0159 (12)0.0030 (8)0.0072 (8)0.0054 (8)
C60.0129 (8)0.0181 (9)0.0191 (12)0.0056 (8)0.0022 (8)0.0012 (8)
N610.0176 (8)0.0264 (10)0.0249 (11)0.0027 (8)0.0077 (7)0.0015 (7)
O610.0148 (6)0.0453 (9)0.0369 (10)0.0020 (7)0.0113 (6)0.0051 (7)
O620.0221 (7)0.0243 (8)0.0430 (10)0.0055 (6)0.0102 (7)0.0087 (7)
Geometric parameters (Å, º) top
C1—O111.338 (2)C24—H24A0.96
C1—C61.414 (2)C24—H24B0.96
C1—C21.437 (2)C24—H24C0.96
O11—H110.82C3—C41.411 (2)
C2—C31.378 (2)C3—H30.93
C2—C211.551 (2)C4—C51.376 (2)
C21—C221.547 (3)C4—N411.474 (2)
C21—C231.554 (3)N41—O421.2355 (18)
C21—C241.557 (3)N41—O411.2375 (18)
C22—H22A0.96C5—C61.385 (2)
C22—H22B0.96C5—H50.93
C22—H22C0.96C6—N611.477 (2)
C23—H23A0.96N61—O611.2276 (16)
C23—H23B0.96N61—O621.2552 (18)
C23—H23C0.96
O11—C1—C6122.31 (14)C21—C24—H24A109.5
O11—C1—C2118.60 (14)C21—C24—H24B109.5
C6—C1—C2119.08 (15)H24A—C24—H24B109.5
C1—O11—H11109.5C21—C24—H24C109.5
C3—C2—C1117.42 (15)H24A—C24—H24C109.5
C3—C2—C21121.79 (15)H24B—C24—H24C109.5
C1—C2—C21120.79 (15)C2—C3—C4121.63 (16)
C22—C21—C2109.68 (14)C2—C3—H3119.2
C22—C21—C23110.52 (15)C4—C3—H3119.2
C2—C21—C23110.63 (15)C5—C4—C3121.80 (16)
C22—C21—C24107.82 (15)C5—C4—N41118.90 (15)
C2—C21—C24110.72 (15)C3—C4—N41119.30 (15)
C23—C21—C24107.41 (15)O42—N41—O41123.60 (15)
C21—C22—H22A109.5O42—N41—C4117.74 (14)
C21—C22—H22B109.5O41—N41—C4118.66 (14)
H22A—C22—H22B109.5C4—C5—C6117.45 (16)
C21—C22—H22C109.5C4—C5—H5121.3
H22A—C22—H22C109.5C6—C5—H5121.3
H22B—C22—H22C109.5C5—C6—C1122.54 (15)
C21—C23—H23A109.5C5—C6—N61116.73 (15)
C21—C23—H23B109.5C1—C6—N61120.72 (15)
H23A—C23—H23B109.5O61—N61—O62122.85 (14)
C21—C23—H23C109.5O61—N61—C6118.70 (15)
H23A—C23—H23C109.5O62—N61—C6118.44 (14)
H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O620.821.852.5743 (17)146
O11—H11···O42i0.822.422.8926 (19)118
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDe Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 468–470.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHart, H. & Cassis, F. A. Jr (1951). J. Org. Chem. 73, 3179–3182.  CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIpatieff, V. N., Pines, H. & Friedman, B. S. (1938). J. Am. Chem. Soc. 60, 2495–2497.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds