organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,3R,4R,5S)-3,4-O-Iso­propyl­­idene-2-methyl-1-oxa-6,9-di­aza­spiro[4.5]decane-7,10-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bEcole Normale Supérieure, Département de Chimie, UMR 8642, 24 rue Lhomond, 75231 Paris Cedex 05, France, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 23 August 2004; accepted 9 September 2004; online 25 September 2004)

The title spiro­carbopeptoid, C11H13N2O5, was prepared from L-fucose in a sequence that gave this and another anomer. The crystal structure determination removes ambiguities in the synthetic sequence.

Comment

Sugar amino acids (SAAs) provide an extensive family of peptidomimetics (Baron et al., 2004[Baron, R., Bakowies, D. & van Gunsteren, W. F. (2004). Angew. Chem. Int. Ed. 43, 4055-4059.]; Chakraborty et al., 2004[Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.]), an important sub-class of which incorporate an α-amino acid at the anomeric position of a carbohydrate. Such SAAs may form spiro derivatives, some of which have been demonstrated to possess significant biological activity. Thus hydantocidin, (5[link]), which is a potent and environmentally friendly herbicide, is a spiro­hydantoin of ribose (Nakajima et al., 1991[Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Ok­aza­ki, T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M. & Haneishi, T. (1991). J. Antibiot. 44, 293-300.]; Harumaya et al., 1991[Harumaya, H., Kinoshita, T., Takayama, T., Kondo, M., Nakajima, M. & Haneishi, T. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1637-1640.]); similar derivatives of glucose have been shown to be potent inhibitors of glycogen phospho­ryl­ase (Watson et al., 1994[Watson, K. A, Mitchell, E. P., Johnson, L. N., Son, J. C., Bichard, C. J. F., Orchard, M. G., Fleet, G. W. J., Oikonomakos. N. G., Leonidas, D. D., Kontou, M. & Papageorgioui. A. (1994). Biochemistry, 33, 5745-5758.]; Bichard et al., 1995[Bichard, C. J. F., Mitchell, E. P., Wormald, M. R., Watson, K. A., Johnson, L. N., Zographos, S. E., Koutra, D. D., Oikonomakos, N. G. & Fleet, G. W. J. (1995). Tetrahedron Lett. 36, 2145-2148.]).

[Scheme 1]

In an investigation of spiro carbopeptide analogues retaining the footprint of the furan­ose form of L-fucose, (2[link]), the sugar (2[link]) was transformed into a separable anomeric mixture of the acetonides (1[link]) and (3[link]); one of these anomers, (3[link]), was highly crystalline and its structure has been shown by X-ray crystallographic analysis to have the relative stereochemistry shown in Fig. 1[link]. The acetonide (3[link]) was transformed into the deprotected analogue, (4[link]), for biological evaluation. Fig. 2[link] is a packing diagram viewed down the c axis. The mol­ecules containing the disordered atoms are, as is not uncommon for Z′ = 2 structures, confined to a distinct layer through the crystal structure. The overall geometry is essentially the same in the ordered and the disordered mol­ecules and is unexceptional.

[Figure 1]
Figure 1
The ordered mol­ecule, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 2]
Figure 2
Packing diagram, viewed along the c axis. The mol­ecules with the disordered atoms are confined to a single layer in the crystal structure. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
The disordered mol­ecule, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 4]
Figure 4
Fo electron density map in the region of the disordered atoms, contoured at 2 (green), 4 (blue) and 6 e Å−3 (red). Note the continuous electron density at each disordered atom. A model with ordered atoms and very large displacement parameters is an alternative interpretation.

Experimental

The title material (Blèriot et al., 2004[Blèriot, Y., Simone, M. I., Wormald, M. R., Watkin, D. J., Müller, M. & Fleet, G. W. J. (2004). In preparation.]) was crystallized by vapour diffusion of hexane into a solution in ethyl acetate to give small chunky crystals.

Crystal data
  • C11H13N2O5

  • Mr = 253.24

  • Monoclinic, P21

  • a = 11.100 (2) Å

  • b = 7.994 (2) Å

  • c = 13.895 (2) Å

  • β = 93.00 (2)°

  • V = 1231.3 (4) Å3

  • Z = 4

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5932 reflections

  • θ = 2.0–26.6°

  • μ = 0.11 mm−1

  • T = 293 K

  • Block, colourless

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Nonius DIP2000 diffractometer

  • ω scans

  • Absorption correction: none

  • 5932 measured reflections

  • 2417 independent reflections

  • 2404 reflections with I > −3σ(I)

  • Rint = 0.035

  • θmax = 26.6°

  • h = −13 → 13

  • k = −8 → 8

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σF2)] = 0.073

  • wR(F2) = 0.139

  • S = 1.07

  • 2404 reflections

  • 338 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F) + 0.034P2 + 0.093P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.004

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

The data were collected on a single-axis image plate diffractometer, leading to missing reflections in the cusp volume. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned on the basis of the known configuration of the starting material. Part of one mol­ecule was modelled with disordered atoms (Fig. 3[link]). The occupancies of the two disorder components were refined to 0.566 (13) and 0.434 (13). Anisotropic displacement parameters were constrained to be equal for corresponding atoms, and restraints were applied to the geometry of the disordered portions to keep them similar to the ordered mol­ecules. Fig. 4[link] is a part of the Fo electron density map in the region of the disordered atoms. Attempts to model the `split' atoms with electron density distributed along a line (Schröder et al., 2004[Schröder, L., Watkin, D. J., Cousson, A., Cooper, R. I. & Paulus, W. (2004). J. Appl. Cryst. 37, 545-550.]) led to slightly higher R values, possibly because the disorder trajectory is actually curved. It appears that both the split-atom and a very large displacement model would fit equally well. All H atoms were found in difference density syntheses. They were initially refined with soft geometry restraints to regularize their geometry (bond lengths to accepted values, angles either set by symmetry or to accepted values), after which they were refined with riding constraints only. C—H distances are all close to 0.98 Å, N—H distances are 0.83–1.09 Å, and Uiso(H) = 1.2Ueq(carrier atom).

Data collection: XPRESS (MacScience, 1989[MacScience (1989). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: XPRESS (MacScience, 1989); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(2S,3R,4R,5S)-3,4-O-isopropylidene-2-methyl-6,9-diazo-1-oxaspiro -[4.5]-decane-7,10-dione top
Crystal data top
C11H13N2O5F(000) = 532
Mr = 253.24Dx = 1.366 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 11.100 (2) ÅCell parameters from 5932 reflections
b = 7.994 (2) Åθ = 2.0–26.6°
c = 13.895 (2) ŵ = 0.11 mm1
β = 93.00 (2)°T = 293 K
V = 1231.3 (4) Å3Block, colourless
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Nonius DIP2000
diffractometer
Rint = 0.035
Graphite monochromatorθmax = 26.6°, θmin = 1.5°
ω scansh = 1313
5932 measured reflectionsk = 88
2417 independent reflectionsl = 1717
2404 reflections with I > 3σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(F) + 0.034 + 0.093P],
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
2404 reflectionsΔρmax = 0.39 e Å3
338 parametersΔρmin = 0.37 e Å3
97 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C100.6248 (4)0.2082 (9)0.6666 (4)0.0158
C120.7226 (5)0.2036 (8)0.5118 (4)0.0149
C130.6028 (5)0.1630 (8)0.4622 (4)0.0188
C150.5042 (4)0.2440 (8)0.6119 (4)0.0150
C170.7048 (5)0.2288 (9)0.8220 (4)0.0189
C180.6682 (5)0.0470 (8)0.8120 (4)0.0187
C190.6345 (5)0.0261 (8)0.7049 (4)0.0151
C210.4913 (5)0.0993 (8)0.7964 (4)0.0202
C250.6786 (6)0.3126 (10)0.9176 (4)0.0271
C260.3590 (6)0.0663 (10)0.8065 (5)0.0324
C270.5286 (6)0.2786 (9)0.8189 (5)0.0292
C300.0611 (4)0.3067 (8)0.6517 (4)0.0126
C320.1914 (5)0.2561 (7)0.5182 (3)0.0127
C330.1988 (5)0.0793 (8)0.5485 (4)0.0188
C350.0240 (5)0.1234 (8)0.6505 (4)0.0140
C370.0066 (5)0.5598 (8)0.7108 (4)0.0168
C450.1133 (6)0.6385 (8)0.7556 (4)0.0224
N110.7240 (4)0.2443 (7)0.6038 (3)0.0132
N140.5011 (4)0.2180 (7)0.5170 (3)0.0163
N310.1111 (4)0.3555 (6)0.5609 (3)0.0125
N340.0956 (4)0.0230 (7)0.6009 (3)0.0162
O160.6352 (3)0.3146 (6)0.7470 (2)0.0164
O200.5211 (3)0.0578 (6)0.7007 (3)0.0197
O220.5585 (4)0.0154 (6)0.8567 (3)0.0221
O230.8155 (3)0.2001 (6)0.4644 (3)0.0165
O240.4178 (3)0.2948 (6)0.6545 (3)0.0209
O360.0433 (3)0.4043 (5)0.6651 (3)0.0153
O430.2563 (3)0.3095 (6)0.4554 (3)0.0165
O440.0638 (3)0.0743 (6)0.6916 (3)0.0179
H110.79830.25350.64090.0378*
H140.41850.24190.47320.0493*
H310.12090.46200.54950.0144*
H340.07050.07350.59250.0424*
H1710.79080.23850.80930.0228*
H1310.59810.04150.45300.0224*
H1320.59830.21570.39830.0218*
H1810.73200.03090.83320.0220*
H1910.69460.03920.67180.0179*
H2510.70700.42850.91640.0330*
H2520.72450.25500.97010.0330*
H2530.59390.31320.93440.0330*
H2610.34240.05120.79020.0382*
H2620.33740.08880.87310.0377*
H2630.31260.13930.76130.0378*
H2710.61510.29210.80950.0350*
H2720.51170.30330.88610.0348*
H2730.48220.35170.77400.0352*
H3310.27180.06490.59040.0241*
H3320.20440.00960.49090.0241*
H3710.02150.63620.66170.0210*
H3810.16010.60190.78240.0391*
H3910.23330.36350.71830.0178*
H4510.18010.65390.70770.0269*
H4520.09000.74720.78300.0272*
H4530.13880.56210.80550.0273*
C380.0997 (6)0.5125 (9)0.7776 (4)0.0330
C390.1502 (5)0.3509 (8)0.7378 (4)0.0156
O400.1423 (4)0.2319 (6)0.8117 (3)0.0271
O4200.0403 (11)0.4453 (15)0.8612 (7)0.03900.434 (13)
O4210.0830 (10)0.4840 (12)0.8745 (5)0.03900.566 (13)
C4100.1090 (11)0.3046 (13)0.8960 (6)0.03500.434 (13)
C4110.1417 (9)0.3292 (11)0.8994 (5)0.03500.566 (13)
C4600.0306 (17)0.178 (3)0.9470 (12)0.04680.434 (13)
C4610.0664 (13)0.244 (2)0.9742 (10)0.04680.566 (13)
C4700.2264 (17)0.358 (2)0.9576 (12)0.03870.434 (13)
C4710.2730 (13)0.3647 (19)0.9350 (9)0.03870.566 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.010 (2)0.028 (4)0.010 (2)0.002 (2)0.0035 (19)0.001 (2)
C120.017 (3)0.008 (3)0.019 (3)0.002 (2)0.002 (2)0.001 (2)
C130.015 (3)0.024 (4)0.018 (3)0.003 (2)0.004 (2)0.003 (2)
C150.009 (3)0.015 (3)0.020 (3)0.002 (2)0.004 (2)0.005 (2)
C170.019 (3)0.025 (4)0.012 (3)0.004 (3)0.002 (2)0.002 (2)
C180.021 (3)0.019 (4)0.017 (3)0.010 (2)0.000 (2)0.003 (2)
C190.011 (3)0.017 (4)0.017 (3)0.003 (2)0.003 (2)0.002 (2)
C210.021 (3)0.021 (4)0.018 (3)0.002 (3)0.002 (2)0.003 (3)
C250.039 (4)0.028 (4)0.014 (3)0.001 (3)0.000 (2)0.007 (3)
C260.024 (3)0.037 (5)0.037 (4)0.001 (3)0.009 (3)0.009 (3)
C270.039 (4)0.019 (4)0.029 (3)0.003 (3)0.003 (3)0.007 (3)
C300.010 (2)0.016 (3)0.012 (2)0.003 (2)0.0045 (19)0.001 (2)
C320.016 (3)0.015 (3)0.006 (2)0.001 (2)0.0033 (19)0.003 (2)
C330.021 (3)0.018 (4)0.019 (3)0.003 (2)0.009 (2)0.000 (2)
C350.012 (3)0.017 (3)0.012 (3)0.002 (2)0.003 (2)0.000 (2)
C370.018 (3)0.014 (3)0.018 (3)0.002 (2)0.003 (2)0.006 (2)
C450.034 (3)0.015 (4)0.019 (3)0.011 (3)0.010 (2)0.001 (2)
N110.008 (2)0.018 (3)0.013 (2)0.0028 (18)0.0010 (16)0.0035 (19)
N140.011 (2)0.021 (3)0.018 (2)0.002 (2)0.0043 (17)0.004 (2)
N310.018 (2)0.005 (3)0.016 (2)0.0001 (17)0.0047 (17)0.0040 (17)
N340.015 (2)0.010 (3)0.024 (3)0.0036 (19)0.0033 (19)0.000 (2)
O160.021 (2)0.016 (2)0.0118 (18)0.0034 (18)0.0009 (15)0.0041 (17)
O200.021 (2)0.020 (3)0.019 (2)0.0065 (17)0.0038 (16)0.0026 (17)
O220.026 (2)0.026 (3)0.016 (2)0.0033 (19)0.0108 (17)0.0024 (18)
O230.0139 (19)0.018 (3)0.018 (2)0.0006 (16)0.0085 (15)0.0016 (17)
O240.0142 (19)0.033 (3)0.0162 (19)0.0074 (18)0.0054 (15)0.0043 (18)
O360.0117 (19)0.015 (2)0.019 (2)0.0030 (16)0.0016 (14)0.0025 (16)
O430.0158 (19)0.020 (2)0.0137 (18)0.0020 (17)0.0039 (14)0.0025 (17)
O440.014 (2)0.019 (3)0.020 (2)0.0036 (16)0.0026 (15)0.0028 (17)
C380.036 (3)0.035 (4)0.027 (3)0.012 (3)0.010 (3)0.014 (3)
C390.010 (3)0.019 (4)0.018 (3)0.001 (2)0.002 (2)0.003 (2)
O400.034 (2)0.032 (3)0.0145 (19)0.004 (2)0.0063 (16)0.0070 (19)
O4200.041 (4)0.059 (4)0.015 (3)0.027 (3)0.016 (3)0.015 (3)
O4210.041 (4)0.059 (4)0.015 (3)0.027 (3)0.016 (3)0.015 (3)
C4100.029 (4)0.059 (4)0.016 (2)0.016 (3)0.006 (3)0.001 (3)
C4110.029 (4)0.059 (4)0.016 (2)0.016 (3)0.006 (3)0.001 (3)
C4600.037 (6)0.080 (7)0.023 (5)0.005 (5)0.004 (4)0.017 (5)
C4610.037 (6)0.080 (7)0.023 (5)0.005 (5)0.004 (4)0.017 (5)
C4700.031 (6)0.064 (6)0.020 (5)0.014 (5)0.011 (4)0.012 (4)
C4710.031 (6)0.064 (6)0.020 (5)0.014 (5)0.011 (4)0.012 (4)
Geometric parameters (Å, º) top
C10—C151.532 (7)C30—O361.417 (6)
C10—C191.551 (9)C30—C391.554 (7)
C10—N111.469 (6)C32—C331.476 (8)
C10—O161.404 (7)C32—N311.354 (7)
C12—C131.501 (8)C32—O431.237 (6)
C12—N111.319 (7)C33—N341.459 (7)
C12—O231.253 (6)C33—H3310.980
C13—N141.462 (7)C33—H3320.980
C13—H1310.980C35—N341.345 (7)
C13—H1320.982C35—O441.219 (6)
C15—N141.334 (7)C37—C451.504 (7)
C15—O241.222 (6)C37—O361.445 (7)
C17—C181.514 (9)C37—H3710.979
C17—C251.529 (8)C37—C381.511 (8)
C17—O161.439 (7)C45—H4510.978
C17—H1710.982C45—H4520.978
C18—C191.525 (8)C45—H4530.977
C18—O221.419 (7)N11—H110.952
C18—H1810.977N14—H141.091
C19—O201.425 (7)N31—H310.874
C19—H1910.981N34—H340.827
C21—C261.506 (8)H381—C380.980
C21—C271.520 (9)H391—C390.980
C21—O201.426 (6)C38—C391.523 (8)
C21—O221.426 (7)C38—O4211.387 (8)
C25—H2510.979C38—C391.523 (8)
C25—H2520.983C38—O4201.467 (9)
C25—H2530.980C39—O401.406 (7)
C26—H2610.981O40—C4111.446 (7)
C26—H2620.985O40—C4101.376 (8)
C26—H2630.983O420—C4101.429 (9)
C27—H2710.982O421—C4111.432 (8)
C27—H2720.982C410—C4601.53 (2)
C27—H2730.981C410—C4701.58 (2)
C30—C351.522 (9)C411—C4611.527 (17)
C30—N311.457 (6)C411—C4711.542 (16)
C15—C10—C19112.9 (5)C32—C33—H331108.2
C15—C10—N11109.3 (4)N34—C33—H331108.2
C19—C10—N11110.3 (4)C32—C33—H332108.4
C15—C10—O16108.4 (5)N34—C33—H332108.4
C19—C10—O16107.2 (4)H331—C33—H332109.4
N11—C10—O16108.7 (5)C30—C35—N34114.4 (5)
C13—C12—N11117.6 (5)C30—C35—O44121.9 (5)
C13—C12—O23119.2 (5)N34—C35—O44123.8 (6)
N11—C12—O23123.2 (5)C45—C37—O36109.4 (5)
C12—C13—N14112.7 (5)C45—C37—H371108.3
C12—C13—H131108.3O36—C37—H371108.8
N14—C13—H131109.1C45—C37—C38117.2 (5)
C12—C13—H132108.9O36—C37—C38104.3 (5)
N14—C13—H132109.7H371—C37—C38108.4
H131—C13—H132107.9C37—C45—H451110.9
C10—C15—N14116.0 (4)C37—C45—H452109.5
C10—C15—O24120.6 (5)H451—C45—H452109.2
N14—C15—O24123.4 (5)C37—C45—H453107.1
C18—C17—C25116.0 (5)H451—C45—H453108.9
C18—C17—O16105.0 (5)H452—C45—H453111.0
C25—C17—O16107.5 (5)C10—N11—C12123.8 (5)
C18—C17—H171108.5C10—N11—H11110.4
C25—C17—H171110.6C12—N11—H11120.6
O16—C17—H171108.7C13—N14—C15125.6 (5)
C17—C18—C19104.2 (5)C13—N14—H14114.2
C17—C18—O22111.4 (5)C15—N14—H14120.1
C19—C18—O22103.7 (4)C30—N31—C32120.8 (5)
C17—C18—H181113.3C30—N31—H31118.3
C19—C18—H181111.1C32—N31—H31113.5
O22—C18—H181112.3C33—N34—C35124.9 (5)
C10—C19—C18103.9 (5)C33—N34—H34119.0
C10—C19—O20112.4 (4)C35—N34—H34115.1
C18—C19—O20105.2 (4)C17—O16—C10107.8 (4)
C10—C19—H191112.0C21—O20—C19108.6 (4)
C18—C19—H191112.2C21—O22—C18106.9 (4)
O20—C19—H191110.5C37—O36—C30108.6 (4)
C26—C21—C27113.7 (5)C37—C38—H381111.6
C26—C21—O20108.7 (5)C37—C38—C39106.2 (5)
C27—C21—O20109.8 (5)H381—C38—C39112.3
C26—C21—O22108.3 (5)C37—C38—O421119.8 (6)
C27—C21—O22110.9 (5)H381—C38—O421100.3
O20—C21—O22105.0 (5)C39—C38—O421106.4 (6)
C17—C25—H251108.9C37—C38—H381111.6
C17—C25—H252108.9C37—C38—C39106.2 (5)
H251—C25—H252107.5H381—C38—C39112.3
C17—C25—H253115.9C37—C38—O420102.0 (6)
H251—C25—H253108.2H381—C38—O420123.2
H252—C25—H253106.9C39—C38—O42099.6 (6)
C21—C26—H261108.5C30—C39—C38103.9 (5)
C21—C26—H262109.9C30—C39—H391112.3
H261—C26—H262109.8C38—C39—H391112.5
C21—C26—H263108.4C30—C39—O40110.3 (4)
H261—C26—H263109.6C38—C39—O40105.7 (4)
H262—C26—H263110.2H391—C39—O40111.5
C21—C27—H271109.4C39—O40—C411104.7 (5)
C21—C27—H272108.8C39—O40—C410111.4 (5)
H271—C27—H272110.0C38—O420—C410107.6 (6)
C21—C27—H273107.6C38—O421—C411107.1 (6)
H271—C27—H273109.4O420—C410—O40102.0 (6)
H272—C27—H273111.4O420—C410—C460111.7 (7)
C35—C30—N31111.3 (4)O40—C410—C460107.5 (8)
C35—C30—O36108.0 (4)O420—C410—C470112.3 (7)
N31—C30—O36108.5 (5)O40—C410—C470108.9 (7)
C35—C30—C39112.9 (5)C460—C410—C470113.6 (7)
N31—C30—C39110.5 (4)O40—C411—O421106.5 (5)
O36—C30—C39105.4 (4)O40—C411—C461111.2 (7)
C33—C32—N31117.7 (5)O421—C411—C461106.9 (7)
C33—C32—O43120.4 (5)O40—C411—C471108.8 (6)
N31—C32—O43121.9 (5)O421—C411—C471109.2 (7)
C32—C33—N34113.9 (5)C461—C411—C471113.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O36i0.952.142.967 (6)144
N11—H11···O44i0.952.192.930 (6)134
N14—H14···O431.091.882.900 (6)153
N31—H31···O23ii0.872.042.899 (7)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

Financial support provided (to RS and MIS) through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaron, R., Bakowies, D. & van Gunsteren, W. F. (2004). Angew. Chem. Int. Ed. 43, 4055–4059.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBichard, C. J. F., Mitchell, E. P., Wormald, M. R., Watson, K. A., Johnson, L. N., Zographos, S. E., Koutra, D. D., Oikonomakos, N. G. & Fleet, G. W. J. (1995). Tetrahedron Lett. 36, 2145–2148.  CrossRef CAS Web of Science Google Scholar
First citationBlèriot, Y., Simone, M. I., Wormald, M. R., Watkin, D. J., Müller, M. & Fleet, G. W. J. (2004). In preparation.  Google Scholar
First citationChakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207.  Web of Science CrossRef CAS Google Scholar
First citationHarumaya, H., Kinoshita, T., Takayama, T., Kondo, M., Nakajima, M. & Haneishi, T. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1637–1640.  Google Scholar
First citationMacScience (1989). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationNakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Ok­aza­ki, T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M. & Haneishi, T. (1991). J. Antibiot. 44, 293–300.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchröder, L., Watkin, D. J., Cousson, A., Cooper, R. I. & Paulus, W. (2004). J. Appl. Cryst. 37, 545–550.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, K. A, Mitchell, E. P., Johnson, L. N., Son, J. C., Bichard, C. J. F., Orchard, M. G., Fleet, G. W. J., Oikonomakos. N. G., Leonidas, D. D., Kontou, M. & Papageorgioui. A. (1994). Biochemistry, 33, 5745–5758.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds