Download citation
Download citation
link to html
The title compound, C14H11ClN2O, was synthesized by the reaction of N-(4-chloro­phenyl)-2-nitro­benzyl­amine with triphosgene, induced by a low-valent titanium reagent (TiCl4/Zn). The di­hydro­quinazoline ring adopts a skew-boat conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804025218/ob6418sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804025218/ob6418Isup2.hkl
Contains datablock I

CCDC reference: 255898

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.037
  • wR factor = 0.096
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.68 mm PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O1 .. 3.17 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

3-(4-Chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one top
Crystal data top
C14H11ClN2OF(000) = 536
Mr = 258.70Dx = 1.418 Mg m3
Monoclinic, P21/cMelting point = 552–553 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71070 Å
a = 9.788 (2) ÅCell parameters from 5478 reflections
b = 13.142 (3) Åθ = 3.1–27.5°
c = 10.114 (2) ŵ = 0.30 mm1
β = 111.329 (4)°T = 193 K
V = 1211.9 (4) Å3Block, colorless
Z = 40.68 × 0.52 × 0.30 mm
Data collection top
Rigaku Mercury
diffractometer
2767 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.8°
ω scansh = 1212
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1517
Tmin = 0.821, Tmax = 0.915l = 1213
13104 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.045P)2 + 0.4313P]
where P = (Fo2 + 2Fc2)/3
2767 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.17552 (4)0.08482 (3)1.23922 (4)0.03801 (13)
O10.65179 (10)0.40940 (7)1.05253 (10)0.0294 (2)
N10.57442 (13)0.51126 (9)0.85885 (13)0.0316 (3)
N20.76210 (12)0.39581 (9)0.88803 (11)0.0269 (2)
C10.66197 (13)0.43694 (10)0.93965 (14)0.0254 (3)
C20.74234 (17)0.40419 (11)0.73756 (14)0.0344 (3)
H2A0.67560.34970.68330.041*
H2B0.83810.39480.72670.041*
C30.67993 (14)0.50578 (10)0.67866 (14)0.0287 (3)
C40.59493 (14)0.55671 (11)0.74218 (14)0.0288 (3)
C50.69748 (15)0.54795 (11)0.55997 (15)0.0332 (3)
H50.75390.51300.51520.040*
C60.63332 (16)0.64073 (12)0.50611 (16)0.0375 (3)
H60.64570.66920.42490.045*
C70.55076 (17)0.69171 (12)0.57205 (16)0.0383 (3)
H70.50730.75540.53590.046*
C80.53153 (15)0.65020 (11)0.68998 (15)0.0347 (3)
H80.47540.68530.73490.042*
C90.86292 (13)0.32077 (10)0.97114 (13)0.0247 (3)
C100.86808 (14)0.22494 (10)0.91564 (14)0.0284 (3)
H100.80390.20860.82210.034*
C110.96687 (15)0.15283 (10)0.99654 (15)0.0303 (3)
H110.97150.08740.95850.036*
C121.05842 (14)0.17722 (10)1.13298 (14)0.0273 (3)
C131.05681 (15)0.27301 (11)1.18835 (15)0.0338 (3)
H131.12190.28941.28150.041*
C140.95910 (15)0.34496 (11)1.10649 (15)0.0335 (3)
H140.95790.41131.14330.040*
H10.511 (2)0.5347 (13)0.8912 (18)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0400 (2)0.0363 (2)0.0361 (2)0.01008 (14)0.01183 (16)0.00985 (14)
O10.0280 (5)0.0308 (5)0.0333 (5)0.0030 (4)0.0160 (4)0.0027 (4)
N10.0278 (6)0.0348 (6)0.0366 (6)0.0107 (5)0.0171 (5)0.0001 (5)
N20.0248 (5)0.0308 (6)0.0266 (5)0.0087 (4)0.0112 (4)0.0012 (4)
C10.0207 (6)0.0257 (6)0.0308 (6)0.0001 (5)0.0105 (5)0.0066 (5)
C20.0382 (8)0.0385 (8)0.0281 (7)0.0149 (6)0.0142 (6)0.0003 (6)
C30.0239 (6)0.0308 (7)0.0301 (6)0.0046 (5)0.0084 (5)0.0024 (5)
C40.0229 (6)0.0309 (7)0.0308 (7)0.0035 (5)0.0077 (5)0.0027 (5)
C50.0294 (7)0.0382 (8)0.0323 (7)0.0050 (6)0.0114 (6)0.0002 (6)
C60.0362 (8)0.0395 (8)0.0340 (7)0.0028 (6)0.0092 (6)0.0058 (6)
C70.0362 (8)0.0315 (8)0.0408 (8)0.0071 (6)0.0065 (6)0.0023 (6)
C80.0303 (7)0.0323 (8)0.0391 (8)0.0081 (5)0.0096 (6)0.0051 (6)
C90.0214 (6)0.0268 (6)0.0278 (6)0.0035 (5)0.0112 (5)0.0008 (5)
C100.0273 (6)0.0285 (7)0.0281 (6)0.0011 (5)0.0087 (5)0.0042 (5)
C110.0334 (7)0.0244 (7)0.0338 (7)0.0023 (5)0.0132 (6)0.0018 (5)
C120.0253 (6)0.0289 (7)0.0300 (6)0.0040 (5)0.0129 (5)0.0050 (5)
C130.0298 (7)0.0382 (8)0.0289 (7)0.0038 (6)0.0053 (5)0.0057 (6)
C140.0323 (7)0.0300 (7)0.0342 (7)0.0049 (5)0.0075 (6)0.0091 (6)
Geometric parameters (Å, º) top
Cl1—C121.7456 (13)C6—C71.392 (2)
O1—C11.2358 (17)C6—H60.9500
N1—C11.3589 (17)C7—C81.385 (2)
N1—C41.4006 (18)C7—H70.9500
N1—H10.861 (18)C8—H80.9500
N2—C11.3775 (16)C9—C141.3869 (19)
N2—C91.4317 (16)C9—C101.3872 (18)
N2—C21.4668 (17)C10—C111.3881 (19)
C2—C31.4986 (19)C10—H100.9500
C2—H2A0.9900C11—C121.3822 (19)
C2—H2B0.9900C11—H110.9500
C3—C51.388 (2)C12—C131.380 (2)
C3—C41.3935 (18)C13—C141.3850 (19)
C4—C81.391 (2)C13—H130.9500
C5—C61.389 (2)C14—H140.9500
C5—H50.9500
C1—N1—C4124.12 (11)C7—C6—H6120.2
C1—N1—H1114.5 (12)C8—C7—C6120.48 (14)
C4—N1—H1120.9 (12)C8—C7—H7119.8
C1—N2—C9118.77 (11)C6—C7—H7119.8
C1—N2—C2121.35 (11)C7—C8—C4119.55 (13)
C9—N2—C2117.61 (10)C7—C8—H8120.2
O1—C1—N1121.39 (11)C4—C8—H8120.2
O1—C1—N2122.87 (12)C14—C9—C10119.73 (12)
N1—C1—N2115.73 (12)C14—C9—N2119.80 (12)
N2—C2—C3111.11 (11)C10—C9—N2120.44 (11)
N2—C2—H2A109.4C9—C10—C11120.09 (12)
C3—C2—H2A109.4C9—C10—H10120.0
N2—C2—H2B109.4C11—C10—H10120.0
C3—C2—H2B109.4C12—C11—C10119.32 (12)
H2A—C2—H2B108.0C12—C11—H11120.3
C5—C3—C4119.29 (13)C10—C11—H11120.3
C5—C3—C2122.59 (12)C13—C12—C11121.18 (12)
C4—C3—C2118.04 (12)C13—C12—Cl1119.11 (11)
C8—C4—C3120.53 (13)C11—C12—Cl1119.69 (11)
C8—C4—N1121.04 (12)C12—C13—C14119.17 (13)
C3—C4—N1118.43 (12)C12—C13—H13120.4
C3—C5—C6120.60 (13)C14—C13—H13120.4
C3—C5—H5119.7C13—C14—C9120.45 (13)
C6—C5—H5119.7C13—C14—H14119.8
C5—C6—C7119.54 (14)C9—C14—H14119.8
C5—C6—H6120.2
C4—N1—C1—O1169.77 (12)C5—C6—C7—C80.4 (2)
C4—N1—C1—N29.71 (19)C6—C7—C8—C40.2 (2)
C9—N2—C1—O12.58 (19)C3—C4—C8—C71.4 (2)
C2—N2—C1—O1159.91 (13)N1—C4—C8—C7178.26 (13)
C9—N2—C1—N1176.89 (11)C1—N2—C9—C1459.84 (17)
C2—N2—C1—N120.61 (18)C2—N2—C9—C14137.01 (14)
C1—N2—C2—C337.78 (18)C1—N2—C9—C10122.08 (13)
C9—N2—C2—C3159.53 (12)C2—N2—C9—C1041.07 (17)
N2—C2—C3—C5156.71 (13)C14—C9—C10—C111.5 (2)
N2—C2—C3—C426.63 (18)N2—C9—C10—C11179.54 (12)
C5—C3—C4—C81.8 (2)C9—C10—C11—C120.7 (2)
C2—C3—C4—C8178.57 (13)C10—C11—C12—C132.2 (2)
C5—C3—C4—N1177.85 (12)C10—C11—C12—Cl1176.30 (10)
C2—C3—C4—N11.07 (19)C11—C12—C13—C141.5 (2)
C1—N1—C4—C8160.96 (13)Cl1—C12—C13—C14177.02 (11)
C1—N1—C4—C319.4 (2)C12—C13—C14—C90.7 (2)
C4—C3—C5—C61.1 (2)C10—C9—C14—C132.2 (2)
C2—C3—C5—C6177.72 (14)N2—C9—C14—C13179.72 (12)
C3—C5—C6—C70.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861 (18)2.012 (19)2.8699 (15)174.5 (16)
C7—H7···O1ii0.952.513.4477 (18)169
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds