metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethylammonium [1-methyl­imidazole-2(3H)-thione]copper(I)-di-μ-sulfido-dioxotungstate(VI)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Shahid Chamran University, Ahvaz, Iran, and bSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 17 November 2004; accepted 18 November 2004; online 27 November 2004)

In the title complex, tetrethylammonium [1-methyl­imidazole-2(3H)-thione-2κS]­dioxo-1κ2O-di-μ-sulfido-1:2κ4S:S-cop­per(I)­tungstate(VI), (C8H20N)[WCuO2S2(Hmimt)], where Hmimt is 1-methyl­imidazole-2(3H)-thione (C4H6N2S), the W and Cu atoms have tetrahedral and trigonal planar coordination, respectively. Two sulfide ligands bridge the two metal centres; tungsten is additionally coordinated by two terminal oxo ligands and copper by the exocyclic S atom of Hmimt. The bridged W⋯Cu distance is 2.670 (3) Å. Anions are linked into chains by N—H⋯O hydrogen bonds between Hmimt and oxo ligands.

Comment

Monovalent coinage metals are typical soft acids and their chemistry is largely based upon coordination by soft bases, such as sulfur donor ligands. Among the sulfur-containing ligands, heterocyclic thiones are of particular interest. Complexes of these ligands with transition metals are of interest in bioinorganic chemistry, because of the search for simple model compounds for metal proteins (Raper, 1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.]; Akrivos, 2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]). In view of this, CuI (Dai et al., 2004[Dai, J., Yang, W., Ren, Z.-G., Zhu, Q.-Y. & Jia, D.-X. (2004). Polyhedron, 23, 1447-1451.]; Aslanidis et al., 2004[Aslanidis, P., Cox, P. J., Divanidis, S. & Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 1063-1076.]; Cox et al., 1999[Cox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. K. (1999). Polyhedron, 18, 1501-1506.]), AgI (Isab et al., 2002[Isab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267-1271.]; Casas et al., 1996[Casas, J. S., Martinez, E. G., Sanchez, A., Gonzalez, A. S., Sordo, J., Casellato, U. & Graziani, R. (1996). Inorg. Chim. Acta, 241, 117-123.]) and AuI (Ahmad, 2004[Ahmad, S. (2004). Coord. Chem. Rev. 248, 231-243.]; Isab & Hussain, 1985[Isab, A. A. & Hussain, M. S. (1985). Polyhedron, 4, 1683-1688.], 1986[Isab, A. A. & Hussain, M. S. (1986). J. Coord. Chem. 15, 125-130.]) complexes with thiones have been widely studied in recent years. We report here the synthesis and characterization of a copper(I) complex with Hmimt [1-methyl­imidazole-2(3H)-thione] and [WO2S2]2− as a sulfur-donor ligands. The anion of the title compound, (I[link]), is only the second example of copper coordination by the [WO2S2]2− metalloligand to be verified by X-ray crystallography (Beheshti et al., 2001[Beheshti, A., Clegg, W. & Fallah, H. (2001). Inorg. Chim. Acta, 322, 1-6.]) and only the third example for any metal, the other being a palladium complex (Long et al., 1999[Long, D.-L., Chen, J.-T. & Huang, J. S. (1999). Inorg. Chim. Acta, 285, 241-248.]).[link]

[Scheme 1]

A view of the structure is shown in Fig. 1[link] and selected geometric parameters are given in Table 1[link]. The asymmetric unit consists of an (Et4N)+ cation and an [O2WS2Cu(Hmimt)] anion. The geometry of the cation is unexceptional. The Cu atom, with trigonal–planar geometry, is coordinated by the exocyclic S atom of an Hmimt ligand and by two S atoms of the di­thio­tungstate group, similar to the arrangement in (PPh4)[O2WS2Cu(PPh3)]·Me2CO (Beheshti et al., 2001[Beheshti, A., Clegg, W. & Fallah, H. (2001). Inorg. Chim. Acta, 322, 1-6.]), where tri­phenyl­phosphine replaces the Hmimt ligand. In the [O2WS2Cu(Hmimt)] anion, the three Cu—S bonds are slightly shorter than those in other compounds in which copper(I) is coordinated by three S atoms in a trigonal array involving bridging thiol­ates, including the clusters (Et4N)[Cu5(SBu)6] (2.260–2.290 Å; Bowmaker et al., 1984[Bowmaker, G. A., Clark, G. R., Seadon, J. K. & Dance, I. G. (1984). Polyhedron, 3, 535-544.]) and (Me4N)2[Cu4(SPh)6]·EtOH (2.263–2.346 Å; Dance et al., 1983[Dance, I. G., Bowmaker, G. A., Clark, G. R. & Seadon, J. K. (1983). Polyhedron, 2, 1031-1043.]). The Cu—S1 bond is significantly shorter than Cu—S bonds (2.202–2.401 Å) in complexes in which copper(I) is coordinated in a trigonal array by a thio­tungstate as a bidentate ligand. This observation can be rationalized as a delocalization of charge from CuI to WVI when a π-donor ligand such as Hmimt and a π-acceptor ligand such as [WO2S2]2− are bonded to a CuI atom. By the same reasoning, the Cu—S3 bond is shorter than that observed in (PPh4)[O2WS2Cu(PPh3)]·Me2CO (average 2.239 Å), in which copper(I) is coordinated by PPh3 as a π-acceptor ligand (Beheshti et al., 2001[Beheshti, A., Clegg, W. & Fallah, H. (2001). Inorg. Chim. Acta, 322, 1-6.]).

The Cu1—S1—C1 angle is essentially the same as those obtained for the terminal Hmimt ligand in [Cu(Hmim)3](NO3) (average 107.3°; Atkinson et al., 1985[Atkinson, E. R., Gardiner, D. J., Jackson, A. R. W. & Raper, E. S. (1985). Inorg. Chim. Acta, 98, 35-41.]). The bending at the thione S atom introduces an asymmetry in the anion which is also apparent in the dimensions of the WS2CuS core. In particular, the S3—Cu—S1 angle on the same side of the anion as the Hmimt ligand is significantly greater than the other two bond angles at the Cu atom. This deviation from ideal trigonal–planar angles of 120° is attributed to steric effects and the bonding requirements of the Hmimt ligand.

The C2—C3 bond length in the Hmimt ligand is clearly consistent with a localized double bond and the thione C=S bond is weakened and lengthened on coordination relative to that of the uncoordinated Hmimt mol­ecule (1.676 Å; Raper et al., 1983[Raper, E. S., Oughtred, R. E. & Nowell, I. W. (1983). Inorg. Chim. Acta, 77, L89-L93.]), due to a reduction in the π-bond character of the thione linkage accompanying metal–thione coordination. The 1H NMR signals of Hmimt are shifted downfield from those for the uncoordinated mol­ecule, indicating that the ligand remains attached to Cu in solution in di­methyl sulfoxide. The 13C NMR signals, compared with their positions in the spectrum of the uncomplexed ligand, support the coordination through S, leading to a weakening of the C=S bond and some partial double bond character for C—N (Popovic et al., 2000[Popovic, Z., Pavlovic, G., Matkovic Calogovic, D., Soldin, Z., Rajic, M., Vikic Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.]; Bierbach et al., 1998[Bierbach, U., Hambly, T. W. & Farrell, N. (1998). Inorg. Chem. 37, 708-716.]).

Tungsten has only slightly distorted tetrahedral coordin­ation. The double sulfide bridges generate a short W⋯Cu distance of 2.670 (3) Å, which is not interpreted as a significant direct metal–metal bond.

The NH group of Hmimt forms a hydrogen bond with an oxo ligand attached to tungsten in a neighbouring anion, with an N⋯O distance of 2.70 (3) Å and an N—H⋯O angle of 177°. Repetition of this hydrogen bond by a screw axis generates a chain of anions along the b axis (Fig. 2[link]). The tautomeric form of Hmimt is also confirmed by characteristic bands in the FT—IR spectrum, with an N—H but no S—H stretching vibration, and by the presence of a 1H NMR signal for H bonded to N. There are no other significant interactions among the components apart from normal coulombic and van der Waals forces; the packing is shown in Fig. 3[link].

The FT–IR spectrum of the complex exhibits strong features at 902 and 837 cm−1 characteristic of the symmetric and asymmetric stretching vibrations of the W=O bonds in the coordinated [WO2S2]2− anion, respectively. The band at 437 cm−1 is assigned to the bridging W—S bonds.

[Figure 1]
Figure 1
The molecular structure, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The chain of anions generated by N—H⋯O hydrogen bonding (shown as dashed lines).
[Figure 3]
Figure 3
The crystal packing, viewed down the a axis.

Experimental

(NH4)2[WO2S2] (0.316 g, 1.0 mmol) was dissolved in di­methyl­form­amide (5 ml) and solid (Et4N)Br (0.441 g, 2.1 mmol) was added. The mixture was stirred at room temperature for 5 min. CuCl (0.1 g, 1.01 mmol) was added and the mixture was stirred for another 5 min and then filtered. 2-Propanol (10 ml) and diethyl ether (20 ml) were added to the filtrate. After stirring for 5 min, the precipitate was collected by filtration. It was washed with 2-propanol (3 ml) and diethyl ether (5 ml) and dried in vacuo to give a hygroscopic orange powder of (Et4N)[O2WS2CuCl] (yield 59%). (Et4N)2[O2WS2CuCl] (0.128 g, 0.2 mmol) was dissolved in aceto­nitrile (5 ml). Hmimt (0.049 g, 0.43 mmol) was added and the mixture was stirred at room temperature for 30 min and then filtered. Dry diethyl ether was added to the filtrate until a cloudiness persisted throughout the solution. Upon leaving the solution to stand in a sealed flask at 278 K overnight, pale-orange crystals of (Et4N)[O2WS2Cu(Hmimt) were obtained. 1H NMR (DMSO-d6): δ 12.62 (s, NH), 7.23 (s, CH), 7.06 (s, CH), 3.53 (s, NCH3), together with characteristic signals for the cation; 13C NMR (DMSO-d6): δ 155.64 (C1), 121.87 (C3), 116.34 (C2), 34.96 (NCH3), and cation signals, using the numbering scheme of Fig. 1.

Crystal data
  • (C8H20N)[WCuO2S2(C4H6N2S)]

  • Mr = 587.93

  • Orthorhombic, P212121

  • a = 7.1985[Ahmad, S. (2004). Coord. Chem. Rev. 248, 231-243.] (5) Å

  • b = 16.3720 (14) Å

  • c = 17.244 (2) Å

  • V = 2032[Ahmad, S. (2004). Coord. Chem. Rev. 248, 231-243.].3 (3) Å3

  • Z = 4

  • Dx = 1.922 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 17595 reflections

  • θ = 2.5–26.0°

  • μ = 7.02 mm−1

  • T = 150 (2) K

  • Block, pale orange

  • 0.34 × 0.16 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.190, Tmax = 0.570

  • 17533 measured reflections

  • 3557 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 25.0°

  • h = −8 → 6

  • k = −19 → 19

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.233

  • S = 1.24

  • 3557 reflections

  • 201 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + 149.3501P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.043

  • Δρmax = 3.68 e Å−3

  • Δρmin = −3.79 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.0029 (6)

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1506 Friedel pairs

  • Flack parameter = 0.35 (5)

Table 1
Selected geometric parameters (Å, °)

W—S2 2.288 (7)
W—S3 2.228 (10)
W—O1 1.77 (2)
W—O2 1.75 (2)
Cu—S1 2.189 (7)
Cu—S2 2.340 (9)
Cu—S3 2.168 (9)
S1—C1 1.75 (3)
N1—C1 1.37 (3)
N1—C2 1.36 (4)
N1—C4 1.40 (3)
N2—C1 1.34 (3)
N2—C3 1.37 (4)
C2—C3 1.33 (4)
S2—W—S3 107.0 (3)
S2—W—O1 107.8 (12)
S2—W—O2 106.3 (8)
S3—W—O1 114.2 (13)
S3—W—O2 112.2 (9)
O1—W—O2 108.9 (12)
S1—Cu—S2 121.7 (3)
S1—Cu—S3 130.9 (4)
S2—Cu—S3 107.2 (4)
Cu—S1—C1 106.5 (10)
W—S2—Cu 70.4 (2)
W—S3—Cu 74.8 (3)
C1—N1—C2 106 (2)
C1—N1—C4 121 (2)
C2—N1—C4 132 (2)
C1—N2—C3 109 (2)
S1—C1—N1 130 (2)
S1—C1—N2 122 (2)
N1—C1—N2 108 (2)
N1—C2—C3 110 (3)
N2—C3—C2 106 (3)
S2—Cu—S1—C1 157.1 (9)
S3—Cu—S1—C1 −18.0 (11)
Cu—S1—C1—N1 65 (3)
Cu—S1—C1—N2 −121 (2)

H atoms were positioned geometrically and refined with a riding model, and with Uiso values constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom. Large and highly anisotropic displacement ellipsoids for the atoms of the cation indicate probable disorder, but no simple disorder model could be resolved; refinement was assisted by restraints on geometry and displacement parameters, and the overall precision of the structure is relatively low as a result. The cation and anion are both achiral, but the compound crystallizes in a non-centrosymmetric space group; the refined Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter of 0.35 (5) indicates partial inversion twinning of the structure. The maximum and minimum final difference electron density features both lie almost 1 Å from the W atom.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: EvalCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); data reduction: EvalCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 1997[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

[1-methylimidazole-2(3H)-thione-2κS]dioxo-1κ2O-di-µ-sulfido-1:2κ4S:S- copper(I)tungstate(VI) top
Crystal data top
(C8H20N)[WCuO2S2(C4H6N2S)]F(000) = 1144
Mr = 587.93Dx = 1.922 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17595 reflections
a = 7.1985 (5) Åθ = 2.5–26.0°
b = 16.3720 (14) ŵ = 7.02 mm1
c = 17.244 (2) ÅT = 150 K
V = 2032.3 (3) Å3Block, pale orange
Z = 40.34 × 0.16 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3557 independent reflections
Radiation source: sealed tube3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 86
Tmin = 0.190, Tmax = 0.570k = 1919
17533 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.092 w = 1/[σ2(Fo2) + 149.3501P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.233(Δ/σ)max = 0.043
S = 1.24Δρmax = 3.68 e Å3
3557 reflectionsΔρmin = 3.79 e Å3
201 parametersExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
127 restraintsExtinction coefficient: 0.0029 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1483 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.35 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W0.58610 (18)0.94048 (7)0.62415 (7)0.0437 (4)
Cu0.6062 (5)1.10332 (18)0.6250 (2)0.0378 (7)
S10.6003 (11)1.2370 (4)0.6215 (5)0.0446 (15)
S20.3362 (11)1.0254 (5)0.6095 (5)0.055 (2)
S30.8309 (10)1.0192 (7)0.6499 (6)0.072 (3)
O10.608 (6)0.8821 (14)0.5385 (15)0.091 (8)
O20.532 (3)0.8752 (14)0.7011 (14)0.061 (6)
N10.983 (3)1.2608 (15)0.6551 (14)0.037 (5)
N20.784 (3)1.3187 (13)0.7341 (13)0.037 (5)
H20.67961.33530.75540.044*
C10.797 (4)1.2705 (18)0.6717 (15)0.033 (5)
C21.077 (5)1.3000 (18)0.7126 (19)0.051 (7)
H2A1.20831.3000.71820.061*
C30.959 (4)1.3381 (19)0.760 (2)0.053 (8)
H30.99011.37190.80260.064*
C41.042 (4)1.2144 (18)0.5914 (17)0.043 (6)
H4A0.93401.19540.56210.064*
H4B1.11351.16720.60980.064*
H4C1.12091.24810.55790.064*
N30.584 (3)0.5761 (17)0.6088 (11)0.071 (6)
C50.460 (5)0.612 (4)0.671 (2)0.114 (15)
H5A0.53520.64670.70580.137*
H5B0.40490.56750.70190.137*
C60.302 (5)0.664 (4)0.634 (4)0.15 (2)
H6A0.21620.68210.67510.223*
H6B0.23430.63150.59610.223*
H6C0.35560.71230.60880.223*
C70.480 (5)0.520 (2)0.5540 (18)0.065 (8)
H7A0.56910.49880.51540.078*
H7B0.38690.55340.52550.078*
C80.379 (5)0.447 (2)0.593 (3)0.089 (12)
H8A0.31650.41450.55290.133*
H8B0.28630.46770.62970.133*
H8C0.46940.41320.62020.133*
C90.734 (4)0.537 (3)0.658 (2)0.101 (13)
H9A0.67440.50290.69860.121*
H9B0.80510.58060.68470.121*
C100.869 (5)0.483 (3)0.610 (2)0.093 (13)
H10A0.95990.45770.64430.140*
H10B0.93420.51770.57180.140*
H10C0.79870.44100.58240.140*
C110.671 (6)0.643 (2)0.560 (3)0.091 (11)
H11A0.57320.67310.53250.109*
H11B0.75460.61760.52120.109*
C120.785 (12)0.702 (3)0.612 (5)0.20 (3)
H12A0.84270.74430.57960.297*
H12B0.88110.67210.64010.297*
H12C0.70130.72860.64960.297*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W0.0549 (7)0.0380 (6)0.0381 (6)0.0110 (5)0.0246 (6)0.0077 (6)
Cu0.0451 (18)0.0381 (15)0.0304 (14)0.0067 (14)0.0083 (17)0.0095 (15)
S10.044 (4)0.040 (3)0.049 (4)0.001 (3)0.001 (4)0.013 (3)
S20.039 (3)0.056 (4)0.071 (6)0.017 (3)0.022 (4)0.013 (4)
S30.016 (3)0.090 (6)0.109 (8)0.011 (3)0.008 (4)0.029 (6)
O10.16 (2)0.049 (11)0.069 (11)0.031 (14)0.040 (17)0.016 (9)
O20.062 (15)0.059 (10)0.061 (11)0.004 (8)0.022 (11)0.021 (9)
N10.014 (7)0.047 (13)0.049 (12)0.014 (8)0.004 (7)0.006 (8)
N20.035 (9)0.035 (12)0.040 (11)0.015 (9)0.018 (8)0.009 (8)
C10.026 (8)0.045 (12)0.028 (11)0.000 (9)0.007 (8)0.001 (9)
C20.032 (9)0.054 (18)0.067 (17)0.025 (13)0.014 (11)0.001 (12)
C30.042 (14)0.042 (17)0.08 (2)0.025 (13)0.009 (12)0.018 (13)
C40.027 (14)0.050 (17)0.051 (14)0.008 (11)0.010 (11)0.006 (10)
N30.067 (16)0.12 (2)0.027 (12)0.022 (12)0.015 (9)0.019 (10)
C50.05 (2)0.20 (5)0.09 (3)0.02 (2)0.003 (17)0.07 (2)
C60.012 (15)0.27 (6)0.16 (5)0.04 (2)0.02 (3)0.09 (4)
C70.07 (2)0.070 (18)0.052 (17)0.019 (14)0.028 (14)0.005 (12)
C80.05 (2)0.10 (2)0.12 (3)0.028 (15)0.006 (18)0.03 (2)
C90.014 (13)0.21 (4)0.08 (2)0.005 (17)0.012 (12)0.018 (19)
C100.06 (2)0.15 (4)0.08 (2)0.021 (19)0.005 (18)0.06 (2)
C110.05 (2)0.09 (2)0.13 (3)0.014 (16)0.00 (2)0.014 (17)
C120.25 (7)0.07 (3)0.27 (7)0.01 (3)0.12 (6)0.02 (4)
Geometric parameters (Å, º) top
W—S22.288 (7)C5—H5A0.99
W—S32.228 (10)C5—H5B0.99
W—O11.77 (2)C5—C61.56 (3)
W—O21.75 (2)C6—H6A0.98
Cu—S12.189 (7)C6—H6B0.98
Cu—S22.340 (9)C6—H6C0.98
Cu—S32.168 (9)C7—H7A0.99
S1—C11.75 (3)C7—H7B0.99
N1—C11.37 (3)C7—C81.55 (3)
N1—C21.36 (4)C8—H8A0.98
N1—C41.40 (3)C8—H8B0.98
N2—H20.88C8—H8C0.98
N2—C11.34 (3)C9—H9A0.99
N2—C31.37 (4)C9—H9B0.99
C2—H2A0.95C9—C101.56 (3)
C2—C31.33 (4)C10—H10A0.98
C3—H30.95C10—H10B0.98
C4—H4A0.98C10—H10C0.98
C4—H4B0.98C11—H11A0.99
C4—H4C0.98C11—H11B0.99
N3—C51.51 (2)C11—C121.56 (3)
N3—C71.51 (2)C12—H12A0.98
N3—C91.51 (2)C12—H12B0.98
N3—C111.51 (2)C12—H12C0.98
S2—W—S3107.0 (3)H5B—C5—C6109.4
S2—W—O1107.8 (12)C5—C6—H6A109.5
S2—W—O2106.3 (8)C5—C6—H6B109.5
S3—W—O1114.2 (13)C5—C6—H6C109.4
S3—W—O2112.2 (9)H6A—C6—H6B109.5
O1—W—O2108.9 (12)H6A—C6—H6C109.5
S1—Cu—S2121.7 (3)H6B—C6—H6C109.5
S1—Cu—S3130.9 (4)N3—C7—H7A108.4
S2—Cu—S3107.2 (4)N3—C7—H7B108.5
Cu—S1—C1106.5 (10)N3—C7—C8115 (3)
W—S2—Cu70.4 (2)H7A—C7—H7B107.5
W—S3—Cu74.8 (3)H7A—C7—C8108.5
C1—N1—C2106 (2)H7B—C7—C8108.4
C1—N1—C4121 (2)C7—C8—H8A109.5
C2—N1—C4132 (2)C7—C8—H8B109.5
H2—N2—C1125.4C7—C8—H8C109.5
H2—N2—C3125.4H8A—C8—H8B109.5
C1—N2—C3109 (2)H8A—C8—H8C109.5
S1—C1—N1130 (2)H8B—C8—H8C109.5
S1—C1—N2122 (2)N3—C9—H9A109.1
N1—C1—N2108 (2)N3—C9—H9B109.1
N1—C2—H2A124.8N3—C9—C10112 (3)
N1—C2—C3110 (3)H9A—C9—H9B107.8
H2A—C2—C3124.8H9A—C9—C10109.1
N2—C3—C2106 (3)H9B—C9—C10109.1
N2—C3—H3126.9C9—C10—H10A109.5
C2—C3—H3126.9C9—C10—H10B109.5
N1—C4—H4A109.5C9—C10—H10C109.5
N1—C4—H4B109.5H10A—C10—H10B109.5
N1—C4—H4C109.5H10A—C10—H10C109.5
H4A—C4—H4B109.5H10B—C10—H10C109.5
H4A—C4—H4C109.5N3—C11—H11A109.5
H4B—C4—H4C109.5N3—C11—H11B109.5
C5—N3—C7113 (3)N3—C11—C12111 (4)
C5—N3—C9101 (2)H11A—C11—H11B108.1
C5—N3—C11111 (4)H11A—C11—C12109.5
C7—N3—C9117 (3)H11B—C11—C12109.5
C7—N3—C11107 (3)C11—C12—H12A109.5
C9—N3—C11108 (3)C11—C12—H12B109.5
N3—C5—H5A109.4C11—C12—H12C109.5
N3—C5—H5B109.4H12A—C12—H12B109.5
N3—C5—C6111 (3)H12A—C12—H12C109.5
H5A—C5—H5B108.0H12B—C12—H12C109.5
H5A—C5—C6109.4
S2—Cu—S1—C1157.1 (9)Cu—S1—C1—N165 (3)
S3—Cu—S1—C118.0 (11)Cu—S1—C1—N2121 (2)
S3—W—S2—Cu5.3 (4)C1—N1—C2—C35 (4)
O1—W—S2—Cu117.9 (11)C4—N1—C2—C3179 (3)
O2—W—S2—Cu125.5 (9)N1—C2—C3—N24 (4)
S1—Cu—S2—W178.4 (3)C1—N2—C3—C21 (4)
S3—Cu—S2—W5.5 (4)C7—N3—C5—C661 (5)
S1—Cu—S3—W178.9 (4)C9—N3—C5—C6174 (4)
S2—Cu—S3—W5.5 (4)C11—N3—C5—C659 (5)
S2—W—S3—Cu5.6 (4)C5—N3—C7—C858 (4)
O1—W—S3—Cu113.6 (11)C9—N3—C7—C858 (4)
O2—W—S3—Cu121.9 (9)C11—N3—C7—C8180 (3)
C3—N2—C1—S1178 (2)C5—N3—C9—C10172 (4)
C3—N2—C1—N12 (3)C7—N3—C9—C1049 (5)
C2—N1—C1—S1179 (2)C11—N3—C9—C1072 (4)
C2—N1—C1—N24 (3)C5—N3—C11—C1257 (5)
C4—N1—C1—S14 (4)C7—N3—C11—C12179 (4)
C4—N1—C1—N2179 (2)C9—N3—C11—C1252 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.881.822.70 (3)177
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the EPSRC (UK) and Shahid Chamran University for financial support.

References

First citationAhmad, S. (2004). Coord. Chem. Rev. 248, 231–243.  Web of Science CrossRef CAS Google Scholar
First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationAslanidis, P., Cox, P. J., Divanidis, S. & Karagiannidis, P. (2004). Inorg. Chim. Acta, 357, 1063–1076.  Web of Science CSD CrossRef CAS Google Scholar
First citationAtkinson, E. R., Gardiner, D. J., Jackson, A. R. W. & Raper, E. S. (1985). Inorg. Chim. Acta, 98, 35–41.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeheshti, A., Clegg, W. & Fallah, H. (2001). Inorg. Chim. Acta, 322, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationBierbach, U., Hambly, T. W. & Farrell, N. (1998). Inorg. Chem. 37, 708–716.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowmaker, G. A., Clark, G. R., Seadon, J. K. & Dance, I. G. (1984). Polyhedron, 3, 535–544.  CSD CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Martinez, E. G., Sanchez, A., Gonzalez, A. S., Sordo, J., Casellato, U. & Graziani, R. (1996). Inorg. Chim. Acta, 241, 117–123.  CSD CrossRef CAS Web of Science Google Scholar
First citationCox, P. J., Aslanidis, P., Karagiannidis, P. & Hadjikakou, S. K. (1999). Polyhedron, 18, 1501–1506.  Web of Science CSD CrossRef CAS Google Scholar
First citationDai, J., Yang, W., Ren, Z.-G., Zhu, Q.-Y. & Jia, D.-X. (2004). Polyhedron, 23, 1447–1451.  Web of Science CSD CrossRef CAS Google Scholar
First citationDance, I. G., Bowmaker, G. A., Clark, G. R. & Seadon, J. K. (1983). Polyhedron, 2, 1031–1043.  CSD CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIsab, A. A., Ahmad, S. & Arab, M. (2002). Polyhedron, 21, 1267–1271.  Web of Science CrossRef CAS Google Scholar
First citationIsab, A. A. & Hussain, M. S. (1985). Polyhedron, 4, 1683–1688.  CrossRef CAS Web of Science Google Scholar
First citationIsab, A. A. & Hussain, M. S. (1986). J. Coord. Chem. 15, 125–130.  CrossRef CAS Web of Science Google Scholar
First citationLong, D.-L., Chen, J.-T. & Huang, J. S. (1999). Inorg. Chim. Acta, 285, 241–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPopovic, Z., Pavlovic, G., Matkovic Calogovic, D., Soldin, Z., Rajic, M., Vikic Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S., Oughtred, R. E. & Nowell, I. W. (1983). Inorg. Chim. Acta, 77, L89–L93.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds