organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Perfluorinated 6-iso­propyl-2,4,5-tri­methyl­benzo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 24 November 2004; accepted 30 November 2004; online 11 December 2004)

In the title compound, 3-fluoro-6-[1,2,2,2-tetrafluoro-1-(tri­fluoro­methyl)ethyl]-2,4,5-tris(trifluoro­methyl)benzonitrile, C13F17N, the benzene ring is puckered due to steric repulsion between substituents.

Comment

The title compound, (I)[link], was obtained as a by-product during our studies concerning fluoride-ion induced perfluoro-alkyl­ation reactions of highly fluorinated aromatic systems (Chambers & Sargent, 1981[Chambers, R. D. & Sargent, C. R. (1981). Adv. Heterocycl. Chem. 28, 1-73.]; Brooke, 1997[Brooke, G. M. (1997). J. Fluorine Chem. 86, 1-76.]; Richmond, 2001[Richmond, P. (2001). PhD thesis, Durham University, England.]).

[Scheme 1]

The molecule of (I)[link] (Fig. 1[link]) is sterically overcrowded, resulting in some very short intramolecular non-bonded distances, viz. F1⋯F2 = 2.467 (4) Å, F1⋯F8 = 2.503 (4) Å, F6⋯F10 = 2.503 (4) Å, F9⋯F12 = 2.430 (4) Å, F11⋯F12 = 2.547 (4) Å, C7⋯F4 = 2.681 (4) Å, C7⋯F15 = 2.606 (4) Å and C7⋯F18 = 2.962 (4) Å, cf. the standard van der Waals contact distances (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) F⋯F = 2.90 Å and C⋯F = 3.22 Å. As a result, the substituents tilt out of the benzene plane and induce some puckering of the ring itself. Thus atoms C1, C2, C3 and C4 of the ring are coplanar within 0.012 (2) Å, but C5 and C6 deviate from the plane by −0.102 (6) and 0.052 (6) Å, respectively. The deviations of the substituent atoms are −0.196 (6) (C7), −0.467 (7) (N), −0.073 (7) (C8), −0.035 (6) (F1), 0.119 (7) (C9), −0.69 (1) (C10) and 0.35 (1) Å (C11).

The C—F bond distances in the trifluoro­methyl groups range from 1.316 (4) to 1.342 (4) Å, with an average of 1.330 (7) Å.

[Figure 1]
Figure 1
Molecular structure of (I)[link]. Atomic displacement ellipsoids are drawn at the 50% probability level.

Experimental

A mixture containing tetrafluoro­phthalonitrile (5.0 g, 25 mmol) and dried KF (2.2 g, 100 mmol) in anhydrous DMF (25 ml) was heated to 323 K under dry N2 with a cold-finger condenser attached, containing acetone/CO2. Me3SiCF3 (14 g, 100 ml) in anhydrous DMF (5 ml) was added slowly to the reaction vessel via a syringe. The mixture was stirred at 323 K for 6 h. The deep red solution was transferred to an autoclave (160 ml) under dry N2. Hexafluoro­propene (15 g, 90 mmol) was transferred into the autoclave under vacuum. The autoclave was sealed and heated to 358 K over a period of 48 h, and then opened in a vacuum. 7.0 g (41 mmol) of hexafluoro­propene was recovered. Continuous extraction into perfluoro­methyl­cyclo­hexane followed by evaporation of the solvent on a rotary evaporator gave a very small quantity of (I)[link] as a white solid. Analysis found: C 31.6, N 2.8%; C13F17N requires: C 31.4, N 2.8%. The 19F NMR data (field strength 376 MHz) are listed in Table 2[link]. The very broad peak at −55.0 p.p.m. can be interpreted as a poorly resolved multiplet of the C10F3 group, resulting from unusual rotation of this group and the adjacent perfluoro­isopropyl group.

Crystal data
  • C13F17N

  • Mr = 493.14

  • Monoclinic, P21/n

  • a = 9.521 (1) Å

  • b = 9.410 (1) Å

  • c = 17.426 (2) Å

  • β = 103.44 (1)°

  • V = 1518.5 (3) Å3

  • Z = 4

  • Dx = 2.157 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 692 reflections

  • θ = 10.2–21.4°

  • μ = 0.28 mm−1

  • T = 100 (2) K

  • Needle, colourless

  • 0.55 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART 1K CCD area detector diffractometer

  • ω scans

  • Absorption correction: none

  • 10 711 measured reflections

  • 3497 independent reflections

  • 1972 reflections with I > 2σ(I)

  • Rint = 0.106

  • θmax = 27.5°

  • h = −12 → 12

  • k = −12 → 12

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.134

  • S = 1.02

  • 3497 reflections

  • 280 parameters

  • w = 1/[σ2(Fo2) + (0.0488P)2 + 0.8197P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected interatomic distances (Å)

N—C7 1.148 (5)
F1—C3 1.336 (4)
F12—C11 1.377 (4)
C1—C2 1.403 (5)
C1—C6 1.407 (5)
C1—C7 1.443 (5)
C2—C3 1.384 (5)
C2—C8 1.520 (5)
C3—C4 1.386 (5)
C4—C5 1.400 (5)
C4—C9 1.532 (5)
C5—C6 1.405 (5)
C5—C10 1.542 (5)
C6—C11 1.539 (5)
C11—C12 1.559 (5)
C11—C13 1.578 (5)

Table 2
19F NMR spectrum of (I)

δ (p.p.m.) Intensity Multiplicity Coupling (Hz) Assignment
−55.0 3 br m C10F3
−56.5 3 dq 4JFF 28, 5JFF 4 C9F3
−57.2 3 d 4JFF 28 C8F3
−69.2 6 br s C12F3, C13F3
−100.6 1 sept 4JFF 28 F1
−163.5 1 q 3JFF 54 F12

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT,. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL(Bruker, 2001[Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL(Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

3-fluoro-6-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-2,4,5- tris(trifluoromethyl)benzonitrile top
Crystal data top
C13F17NF(000) = 952
Mr = 493.14Dx = 2.157 Mg m3
Monoclinic, P21/nMelting point = 351–352 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.521 (1) ÅCell parameters from 692 reflections
b = 9.410 (1) Åθ = 10.2–21.4°
c = 17.426 (2) ŵ = 0.28 mm1
β = 103.44 (1)°T = 100 K
V = 1518.5 (3) Å3Needle, colourless
Z = 40.55 × 0.08 × 0.02 mm
Data collection top
Bruker SMART 1K CCD area detector
diffractometer
1972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.106
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
Detector resolution: 8 pixels mm-1h = 1212
ω scansk = 1212
10711 measured reflectionsl = 2222
3497 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057Secondary atom site location: difference Fourier map
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.8197P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3497 reflectionsΔρmax = 0.34 e Å3
280 parametersΔρmin = 0.35 e Å3
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 4 sets of exposures; each set had a different φ and/or 2θ angles and each exposure (50 s) covered 0.3° in ω. Crystal decay was monitored by repeating 50 initial frames at the end of data collection and comparing 78 duplicate reflections. Crystal to detector distance 4.53 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.2327 (4)0.6948 (3)0.2402 (2)0.0301 (8)
F10.0004 (2)0.2198 (2)0.04015 (13)0.0293 (5)
F20.1394 (3)0.4289 (3)0.06439 (15)0.0451 (7)
F30.0544 (2)0.4634 (2)0.18788 (13)0.0328 (6)
F40.0287 (3)0.6210 (2)0.10331 (15)0.0378 (6)
F60.3691 (3)0.0630 (2)0.00157 (14)0.0346 (6)
F70.2104 (3)0.0262 (2)0.05958 (15)0.0378 (6)
F80.1453 (3)0.1025 (2)0.04488 (13)0.0352 (6)
F90.5879 (2)0.2270 (2)0.21283 (12)0.0229 (5)
F100.4727 (2)0.0556 (2)0.14733 (13)0.0269 (5)
F110.6071 (2)0.1887 (2)0.09313 (13)0.0265 (5)
F120.6279 (2)0.4431 (2)0.14449 (13)0.0245 (5)
F130.4826 (3)0.6219 (2)0.04560 (13)0.0341 (6)
F140.6437 (3)0.7132 (2)0.13983 (15)0.0361 (6)
F150.4183 (2)0.7475 (2)0.13403 (14)0.0312 (6)
F160.7056 (2)0.4894 (2)0.28607 (14)0.0331 (6)
F170.5644 (3)0.6689 (2)0.28107 (14)0.0350 (6)
F180.4884 (2)0.4594 (2)0.29882 (12)0.0296 (5)
C10.2450 (4)0.4827 (3)0.1475 (2)0.0162 (8)
C20.1146 (4)0.4156 (4)0.1118 (2)0.0170 (8)
C30.1224 (4)0.2883 (4)0.0732 (2)0.0200 (8)
C40.2527 (4)0.2237 (3)0.0719 (2)0.0171 (8)
C50.3818 (4)0.2856 (4)0.1133 (2)0.0168 (8)
C60.3790 (4)0.4234 (3)0.14396 (19)0.0151 (7)
C70.2380 (4)0.6051 (4)0.1964 (2)0.0208 (8)
C80.0287 (4)0.4813 (4)0.1170 (2)0.0222 (8)
C90.2446 (5)0.0883 (4)0.0222 (2)0.0275 (9)
C100.5157 (4)0.1899 (4)0.1405 (2)0.0213 (8)
C110.5182 (4)0.5116 (4)0.1689 (2)0.0190 (8)
C120.5138 (4)0.6530 (4)0.1218 (2)0.0266 (9)
C130.5710 (4)0.5318 (4)0.2610 (2)0.0237 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.035 (2)0.0232 (18)0.034 (2)0.0063 (15)0.0119 (17)0.0049 (16)
F10.0223 (12)0.0271 (12)0.0356 (13)0.0059 (10)0.0006 (10)0.0036 (10)
F20.0204 (13)0.0660 (18)0.0457 (16)0.0075 (13)0.0008 (11)0.0243 (14)
F30.0349 (14)0.0364 (13)0.0333 (13)0.0077 (11)0.0203 (11)0.0024 (11)
F40.0336 (14)0.0247 (13)0.0593 (16)0.0148 (11)0.0195 (13)0.0154 (12)
F60.0398 (14)0.0270 (12)0.0359 (14)0.0090 (11)0.0068 (11)0.0134 (11)
F70.0464 (15)0.0125 (11)0.0490 (16)0.0040 (11)0.0006 (13)0.0004 (11)
F80.0422 (15)0.0261 (12)0.0304 (13)0.0048 (11)0.0055 (11)0.0113 (10)
F90.0234 (12)0.0182 (10)0.0257 (12)0.0015 (9)0.0032 (10)0.0006 (9)
F100.0303 (12)0.0093 (10)0.0394 (13)0.0016 (9)0.0046 (11)0.0007 (9)
F110.0258 (12)0.0227 (11)0.0345 (13)0.0081 (9)0.0139 (11)0.0028 (10)
F120.0203 (11)0.0196 (11)0.0374 (13)0.0004 (9)0.0141 (10)0.0035 (10)
F130.0563 (17)0.0223 (12)0.0271 (13)0.0038 (11)0.0164 (12)0.0038 (10)
F140.0347 (14)0.0210 (12)0.0550 (16)0.0124 (11)0.0150 (13)0.0042 (11)
F150.0383 (14)0.0141 (10)0.0448 (14)0.0046 (10)0.0171 (12)0.0042 (10)
F160.0243 (13)0.0316 (13)0.0392 (14)0.0022 (11)0.0008 (11)0.0010 (11)
F170.0472 (15)0.0201 (11)0.0350 (13)0.0004 (11)0.0038 (12)0.0110 (10)
F180.0304 (13)0.0354 (13)0.0226 (12)0.0097 (10)0.0055 (10)0.0012 (10)
C10.024 (2)0.0104 (16)0.0165 (18)0.0027 (15)0.0086 (15)0.0012 (14)
C20.0191 (19)0.0186 (18)0.0152 (18)0.0021 (16)0.0077 (15)0.0042 (15)
C30.024 (2)0.0170 (18)0.0179 (19)0.0049 (16)0.0018 (16)0.0017 (15)
C40.023 (2)0.0099 (16)0.0183 (18)0.0032 (15)0.0045 (16)0.0024 (14)
C50.0195 (19)0.0149 (17)0.0187 (18)0.0014 (15)0.0097 (16)0.0006 (15)
C60.0224 (19)0.0092 (16)0.0140 (17)0.0003 (14)0.0049 (15)0.0010 (14)
C70.019 (2)0.0181 (19)0.027 (2)0.0051 (16)0.0091 (17)0.0005 (16)
C80.019 (2)0.024 (2)0.025 (2)0.0027 (16)0.0078 (17)0.0010 (16)
C90.032 (2)0.0166 (19)0.032 (2)0.0031 (18)0.0027 (19)0.0042 (17)
C100.023 (2)0.0144 (18)0.027 (2)0.0022 (16)0.0060 (18)0.0006 (16)
C110.0172 (19)0.0155 (18)0.027 (2)0.0027 (15)0.0110 (16)0.0006 (15)
C120.029 (2)0.0190 (19)0.035 (2)0.0054 (17)0.0128 (19)0.0008 (18)
C130.019 (2)0.0181 (19)0.031 (2)0.0025 (16)0.0003 (17)0.0023 (17)
Geometric parameters (Å, º) top
N—C71.148 (5)F17—C131.342 (4)
F1—C31.336 (4)F18—C131.326 (4)
F2—C81.321 (4)C1—C21.403 (5)
F3—C81.325 (4)C1—C61.407 (5)
F4—C81.336 (4)C1—C71.443 (5)
F6—C91.337 (5)C2—C31.384 (5)
F7—C91.337 (4)C2—C81.520 (5)
F8—C91.329 (5)C3—C41.386 (5)
F9—C101.335 (4)C4—C51.400 (5)
F10—C101.342 (4)C4—C91.532 (5)
F11—C101.332 (4)C5—C61.405 (5)
F12—C111.377 (4)C5—C101.542 (5)
F13—C121.324 (5)C6—C111.539 (5)
F14—C121.329 (5)C11—C121.559 (5)
F15—C121.325 (4)C11—C131.578 (5)
F16—C131.316 (4)
C2—C1—C6121.3 (3)F8—C9—C4110.2 (3)
C2—C1—C7117.6 (3)F6—C9—C4111.7 (3)
C6—C1—C7120.6 (3)F7—C9—C4112.4 (3)
C3—C2—C1117.6 (3)F11—C10—F9108.6 (3)
C3—C2—C8122.1 (3)F11—C10—F10107.7 (3)
C1—C2—C8120.3 (3)F9—C10—F10105.3 (3)
F1—C3—C2119.2 (3)F11—C10—C5115.3 (3)
F1—C3—C4118.2 (3)F9—C10—C5110.2 (3)
C2—C3—C4122.4 (3)F10—C10—C5109.3 (3)
C3—C4—C5119.4 (3)F12—C11—C6109.0 (3)
C3—C4—C9116.5 (3)F12—C11—C1299.6 (3)
C5—C4—C9124.0 (3)C6—C11—C12113.3 (3)
C4—C5—C6119.2 (3)F12—C11—C13106.6 (3)
C4—C5—C10118.7 (3)C6—C11—C13113.7 (3)
C6—C5—C10120.6 (3)C12—C11—C13113.4 (3)
C5—C6—C1118.7 (3)F13—C12—F15107.9 (3)
C5—C6—C11120.9 (3)F13—C12—F14108.1 (3)
C1—C6—C11120.2 (3)F15—C12—F14108.2 (3)
N—C7—C1174.4 (4)F13—C12—C11108.2 (3)
F2—C8—F3108.0 (3)F15—C12—C11115.0 (3)
F2—C8—F4106.1 (3)F14—C12—C11109.2 (3)
F3—C8—F4107.4 (3)F16—C13—F18108.9 (3)
F2—C8—C2112.9 (3)F16—C13—F17107.8 (3)
F3—C8—C2111.5 (3)F18—C13—F17107.2 (3)
F4—C8—C2110.7 (3)F16—C13—C11110.9 (3)
F8—C9—F6106.0 (3)F18—C13—C11111.0 (3)
F8—C9—F7107.8 (3)F17—C13—C11110.9 (3)
F6—C9—F7108.6 (3)
C3—C2—C8—F217.8 (5)C5—C6—C11—F129.3 (4)
C3—C4—C9—F779.9 (4)F12—C11—C12—F1456.6 (4)
C4—C5—C10—F1196.9 (4)F12—C11—C13—F165.3 (4)
19F NMR spectrum of (I) top
δ (p.p.m.)IntensityMultiplicityCoupling (Hz)Assignement
-55.03br mC10F3
-56.53dq4JFF 28, 5JFF 4C9F3
-57.23d4JFF 28C8F3
-69.26br sC12F3, C13F3
-100.61sept4JFF 28F1
-163.51q3JFF 54F12
 

Acknowledgements

We thank EPSRC (Quota studentship to PR) for funding.

References

First citationBrooke, G. M. (1997). J. Fluorine Chem. 86, 1–76.  Web of Science CrossRef Google Scholar
First citationBruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT,. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambers, R. D. & Sargent, C. R. (1981). Adv. Heterocycl. Chem. 28, 1–73.  CrossRef CAS Google Scholar
First citationRichmond, P. (2001). PhD thesis, Durham University, England.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds