organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3R,4R,5S)-5-(Acetamido­methyl)-N-benzyl-3,4-di­hydroxy­tetra­hydro­furan-3-carboxamide

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk

(Received 10 December 2004; accepted 14 January 2005; online 29 January 2005)

The title compound, C15H20N2O5, is the first example of a branched tetrahydro­furan sugar amino acid dipeptide isostere incorporated into a peptidomimetic. The crystal structure contains intermolecular N—H⋯O and O—H⋯O hydrogen bonds.

Comment

δ-Tetrahydro­furan (THF) sugar amino acids (SAA) have been extensively investigated as dipeptide isosteres (Baron et al., 2004[Baron, R., Bakowies, D. & van Gunsteren, W. F. (2004). Angew. Chem. Int. Ed. 43, 4055-4059.]; Grotenberg et al., 2004[Grotenberg, G. M., Timmerj, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444-3446.]; Raunkjr et al., 2004[Raunkjr, M., El Oualid, F., van der Marel, G. A., Overkleeft, H. S. & Overhand, M. (2004). Org. Lett. 6, 3167-3170.]). Introduction of δ-THF SAA building blocks has been shown to induce secondary structural features such as β-turn-like structures (Chakraborty et al., 2004[Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187-207.]; Smith et al., 2003[Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.]; Hungerford et al., 2000[Hungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, 21, 3666-3679.]) and helices (Claridge et al., 1999[Claridge, T. D. W., Long, D. D., Hungerford, N. L., Aplin, R. T., Smith, M. D., Marquess, D. G. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2199-2202.]; Osterkamp et al., 2000[Osterkamp, F., Ziemer, B., Koert, U., Wiesner, M., Raddatz, P. & Goodman, S. L. (2000). Chem. Eur. J. 6, 666-683.]) in small peptidomimetics. All the previously reported δ-THF SAA scaffolds have linear carbon chains, as in (1)[link], which has been incorporated into peptidomimetics such as (2)[link]. The synthesis of branched sugar lactones (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]) has allowed ready access to a new class of δ-THF SAA building blocks, such as (3)[link], which contain a branched carbon chain. The monomer (3)[link] was prepared as an oil from L-lyxonolactone in a sequence in which the branched carbon chain was introduced by the Ho (1978[Ho, P. T. (1978). Tetrahedron Lett. 19, 1623-1626.], 1985a[Ho, P. T. (1985a). Can. J. Chem. 57, 381-381.],b[Ho, P. T. (1985b). Can. J. Chem. 63, 2221-2224.]) crossed aldol procedure, and the δ-THF ring was subsequently formed by an intramolecular alkyl­ation. The branched scaffold (3)[link] was transformed into the crystalline branched peptidomimetic (4)[link].

[Scheme 1]

The structure of (4)[link] has been determined in order to remove any ambiguity in the stereochemical outcomes of either the aldol or the ring closure reactions. Additionally, the crystal structure of (4)[link] may give some indication of the secondary structural motif likely to be induced by the incorporation of the monomer (3)[link] into peptidomimetics. The molecular structure of (4)[link] is shown in Fig. 1[link]. As usually expected for sugar derivatives, there are intermolecular hydrogen bonds (Table 2[link] and Fig. 2[link]).

[Figure 1]
Figure 1
The molecular structure of (4), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of (4), viewed down the b axis. Hydrogen bonds are indicated by dashed lines.

Experimental

Compound (4)[link] was dissolved in acetone in a small glass cylinder and then crystallized as the solvent evaporated slowly to give colourless needle-like crystals.

Crystal data
  • C15H20N2O5

  • Mr = 308.33

  • Orthorhombic, P212121

  • a = 15.3802 (6) Å

  • b = 5.4473 (2) Å

  • c = 18.0635 (8) Å

  • V = 1513.37 (10) Å3

  • Z = 4

  • Dx = 1.353 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3224 reflections

  • θ = 5–27°

  • μ = 0.10 mm−1

  • T = 120 K

  • Needle, colourless

  • 0.40 × 0.04 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.820, Tmax = 0.998

  • 5747 measured reflections

  • 1973 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 27.4°

  • h = −19 → 19

  • k = −7 → 5

  • l = −23 → 23

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 0.93

  • 1973 reflections

  • 200 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 0.02 + 0.04P], where P = [max(Fo2, 0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.])

  • Extinction coefficient: 16 (5)

Table 1
Selected bond lengths (Å)

C1—C2 1.551 (2)
C1—C5 1.525 (3)
C1—C12 1.531 (3)
C1—O22 1.421 (2)
C2—C3 1.518 (3)
C2—O11 1.421 (2)
C3—O4 1.438 (2)
C3—C6 1.522 (3)
O4—C5 1.436 (2)
C6—N7 1.453 (2)
N7—C8 1.334 (2)
C8—O9 1.236 (2)
C8—C10 1.501 (3)
C12—N13 1.333 (2)
C12—O21 1.235 (2)
N13—C14 1.454 (2)
C14—C15 1.515 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O22—H6⋯O9i 0.95 1.75 2.649 (2) 158
N7—H12⋯O21ii 1.00 1.95 2.953 (2) 177
O11—H1⋯O11iii 0.95 1.95 2.886 (2) 166
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

In the absence of significant anomalous scattering, Friedel pairs were merged. The absolute configuration of (4) was assigned since the starting material was L-lyxonolactone with known absolute configuration and two of the chiral centres are retained (see scheme). H atoms were located in difference density maps. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.98–1.01 Å, O—H = 0.95 Å and N—H = 0.95–1.00 Å), after which they were refined as riding, with Uiso(H) = 1.2Ueq(C), and Uiso(H) = 0.05 Å2 for those bonded to N and O atoms.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(3R,4R,5S)-5-(Acetamidomethyl)-N-benzyl-3,4-dihydroxytetrahydrofuran- 3-carboxamide top
Crystal data top
C15H20N2O5Dx = 1.353 Mg m3
Mr = 308.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3224 reflections
a = 15.3802 (6) Åθ = 5–27°
b = 5.4473 (2) ŵ = 0.10 mm1
c = 18.0635 (8) ÅT = 120 K
V = 1513.37 (10) Å3Needle, colourless
Z = 40.40 × 0.04 × 0.02 mm
F(000) = 656
Data collection top
Nonius KappaCCD
diffractometer
1594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1919
Tmin = 0.820, Tmax = 0.998k = 75
5747 measured reflectionsl = 2323
1973 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(F2) + 0.02 + 0.04P],
where P = (max(Fo2, 0) + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.93Δρmax = 0.27 e Å3
1973 reflectionsΔρmin = 0.23 e Å3
200 parametersExtinction correction: Larson (1970)
0 restraintsExtinction coefficient: 16 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88317 (12)0.7829 (4)0.87417 (9)0.0223
C20.97505 (11)0.8760 (3)0.85276 (9)0.0218
C31.03223 (13)0.7093 (3)0.89934 (10)0.0236
O40.98853 (9)0.4761 (2)0.90166 (8)0.0325
C50.89837 (13)0.5078 (4)0.88312 (11)0.0253
C61.12326 (12)0.6622 (4)0.86972 (10)0.0280
N71.17646 (10)0.8825 (3)0.87016 (8)0.0265
C81.23146 (13)0.9302 (4)0.92556 (10)0.0277
O91.23594 (9)0.7976 (3)0.98096 (7)0.0359
C101.28844 (14)1.1520 (4)0.91690 (12)0.0382
O110.99245 (8)0.8649 (2)0.77563 (6)0.0260
C120.81349 (12)0.8364 (3)0.81569 (9)0.0223
N130.76255 (10)1.0272 (3)0.83168 (8)0.0270
C140.69186 (12)1.1100 (4)0.78430 (10)0.0302
C150.62532 (12)1.2545 (4)0.82810 (10)0.0258
C160.59055 (13)1.4675 (4)0.79875 (11)0.0290
C170.52648 (15)1.5955 (4)0.83627 (11)0.0364
C180.49727 (14)1.5138 (4)0.90401 (11)0.0369
C190.53254 (14)1.3028 (4)0.93495 (12)0.0344
C200.59632 (13)1.1732 (4)0.89712 (11)0.0308
O210.80707 (9)0.7148 (3)0.75824 (7)0.0310
O220.86476 (8)0.9015 (3)0.94242 (6)0.0267
H210.98241.04840.86950.0249*
H311.03460.77700.95050.0275*
H510.86280.43500.92300.0314*
H520.88630.41940.83510.0314*
H611.15280.53780.90190.0351*
H621.11970.60020.81820.0351*
H1011.34961.10690.92110.0460*
H1021.28281.23420.86760.0460*
H1031.27891.28080.95480.0460*
H1410.71541.21510.74370.0369*
H1420.66590.96060.76170.0369*
H1610.61081.52340.74920.0370*
H1710.50211.74910.81410.0440*
H1810.45171.60880.93210.0440*
H1910.51241.23890.98510.0400*
H2010.62191.02390.91860.0366*
H30.77241.08540.88030.0500*
H60.82500.79400.96580.0500*
H121.18000.99570.82660.0500*
H10.99320.69280.76640.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (10)0.0238 (9)0.0187 (8)0.0028 (9)0.0037 (8)0.0028 (8)
C20.0248 (10)0.0213 (8)0.0192 (8)0.0016 (9)0.0011 (8)0.0008 (8)
C30.0272 (10)0.0211 (8)0.0226 (9)0.0026 (9)0.0003 (8)0.0003 (8)
O40.0278 (8)0.0248 (7)0.0450 (8)0.0026 (7)0.0068 (7)0.0071 (7)
C50.0249 (10)0.0249 (10)0.0263 (10)0.0029 (9)0.0005 (8)0.0003 (9)
C60.0288 (10)0.0282 (10)0.0270 (10)0.0034 (10)0.0045 (9)0.0033 (9)
N70.0221 (8)0.0322 (8)0.0252 (8)0.0006 (8)0.0029 (7)0.0027 (8)
C80.0217 (10)0.0331 (11)0.0284 (10)0.0027 (9)0.0032 (8)0.0007 (10)
O90.0339 (8)0.0421 (9)0.0316 (7)0.0004 (8)0.0118 (6)0.0080 (7)
C100.0323 (12)0.0396 (12)0.0428 (12)0.0034 (11)0.0087 (10)0.0039 (11)
O110.0267 (7)0.0315 (7)0.0198 (6)0.0008 (7)0.0037 (6)0.0033 (6)
C120.0216 (9)0.0232 (9)0.0222 (10)0.0032 (9)0.0032 (8)0.0013 (8)
N130.0239 (8)0.0292 (8)0.0278 (8)0.0028 (8)0.0027 (7)0.0039 (8)
C140.0256 (10)0.0372 (10)0.0276 (10)0.0032 (10)0.0002 (8)0.0000 (9)
C150.0228 (10)0.0295 (9)0.0252 (9)0.0032 (9)0.0023 (8)0.0022 (9)
C160.0284 (11)0.0308 (10)0.0279 (10)0.0009 (10)0.0012 (9)0.0004 (9)
C170.0377 (12)0.0365 (11)0.0351 (11)0.0071 (11)0.0083 (10)0.0029 (10)
C180.0291 (11)0.0471 (13)0.0344 (11)0.0054 (11)0.0015 (10)0.0111 (11)
C190.0324 (11)0.0405 (11)0.0304 (10)0.0035 (11)0.0039 (9)0.0016 (10)
C200.0327 (11)0.0298 (10)0.0299 (10)0.0009 (9)0.0014 (9)0.0010 (9)
O210.0299 (8)0.0380 (7)0.0251 (7)0.0014 (7)0.0014 (6)0.0076 (7)
O220.0281 (7)0.0316 (7)0.0204 (6)0.0023 (7)0.0040 (6)0.0042 (6)
Geometric parameters (Å, º) top
C1—C21.551 (2)C10—H1030.992
C1—C51.525 (3)O11—H10.952
C1—C121.531 (3)C12—N131.333 (2)
C1—O221.421 (2)C12—O211.235 (2)
C2—C31.518 (3)N13—C141.454 (2)
C2—O111.421 (2)N13—H30.946
C2—H210.993C14—C151.515 (3)
C3—O41.438 (2)C14—H1410.998
C3—C61.522 (3)C14—H1420.994
C3—H310.996C15—C161.383 (3)
O4—C51.436 (2)C15—C201.397 (3)
C5—H510.988C16—C171.386 (3)
C5—H521.009C16—H1610.996
C6—N71.453 (2)C17—C181.378 (3)
C6—H611.001C17—H1711.000
C6—H620.991C18—C191.388 (3)
N7—C81.334 (2)C18—H1811.009
N7—H121.001C19—C201.389 (3)
C8—O91.236 (2)C19—H1911.020
C8—C101.501 (3)C20—H2010.983
C10—H1010.975O22—H60.947
C10—H1021.001
C2—C1—C5102.01 (15)C8—C10—H102113.8
C2—C1—C12113.72 (14)H101—C10—H102105.3
C5—C1—C12111.54 (15)C8—C10—H103114.2
C2—C1—O22104.54 (14)H101—C10—H103105.6
C5—C1—O22112.69 (15)H102—C10—H103106.6
C12—C1—O22111.80 (15)C2—O11—H1102.4
C1—C2—C3101.14 (14)C1—C12—N13114.19 (15)
C1—C2—O11113.85 (14)C1—C12—O21122.15 (16)
C3—C2—O11114.10 (15)N13—C12—O21123.65 (17)
C1—C2—H21109.7C12—N13—C14123.60 (16)
C3—C2—H21109.4C12—N13—H3111.7
O11—C2—H21108.5C14—N13—H3124.1
C2—C3—O4105.93 (15)N13—C14—C15111.03 (15)
C2—C3—C6116.01 (15)N13—C14—H141109.7
O4—C3—C6106.97 (15)C15—C14—H141109.4
C2—C3—H31108.3N13—C14—H142106.7
O4—C3—H31108.5C15—C14—H142111.6
C6—C3—H31110.9H141—C14—H142108.3
C3—O4—C5109.77 (14)C14—C15—C16119.78 (17)
C1—C5—O4106.88 (16)C14—C15—C20121.25 (17)
C1—C5—H51112.7C16—C15—C20118.95 (19)
O4—C5—H51108.5C15—C16—C17120.64 (19)
C1—C5—H52110.5C15—C16—H161118.6
O4—C5—H52108.6C17—C16—H161120.7
H51—C5—H52109.6C16—C17—C18120.4 (2)
C3—C6—N7112.17 (15)C16—C17—H171119.5
C3—C6—H61109.1C18—C17—H171120.1
N7—C6—H61107.5C17—C18—C19119.8 (2)
C3—C6—H62109.7C17—C18—H181120.6
N7—C6—H62108.5C19—C18—H181119.6
H61—C6—H62109.8C18—C19—C20119.90 (19)
C6—N7—C8121.40 (16)C18—C19—H191121.4
C6—N7—H12122.4C20—C19—H191118.7
C8—N7—H12115.7C15—C20—C19120.33 (19)
N7—C8—O9121.84 (19)C15—C20—H201119.1
N7—C8—C10116.61 (17)C19—C20—H201120.6
O9—C8—C10121.55 (18)C1—O22—H6103.7
C8—C10—H101110.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O22—H6···O9i0.951.752.649 (2)158
N7—H12···O21ii1.001.952.953 (2)177
O11—H1···O11iii0.951.952.886 (2)166
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaron, R., Bakowies, D. & van Gunsteren, W. F. (2004). Angew. Chem. Int. Ed. 43, 4055–4059.  Web of Science CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207.  Web of Science CrossRef CAS Google Scholar
First citationClaridge, T. D. W., Long, D. D., Hungerford, N. L., Aplin, R. T., Smith, M. D., Marquess, D. G. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2199–2202.  Web of Science CrossRef CAS Google Scholar
First citationGrotenberg, G. M., Timmerj, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446.  Web of Science CSD CrossRef PubMed Google Scholar
First citationHo, P. T. (1978). Tetrahedron Lett. 19, 1623–1626.  CrossRef Google Scholar
First citationHo, P. T. (1985a). Can. J. Chem. 57, 381–381.  CrossRef Web of Science Google Scholar
First citationHo, P. T. (1985b). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationHungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, 21, 3666–3679.  Web of Science CrossRef Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOsterkamp, F., Ziemer, B., Koert, U., Wiesner, M., Raddatz, P. & Goodman, S. L. (2000). Chem. Eur. J. 6, 666–683.  CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaunkjr, M., El Oualid, F., van der Marel, G. A., Overkleeft, H. S. & Overhand, M. (2004). Org. Lett. 6, 3167–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSmith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds