organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(2-chloro-1,4-di­hydro-1,4-dioxonaphthalen-3-yl­amino)-4-phenyl­thia­zole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 17 February 2005; accepted 21 February 2005; online 24 February 2005)

The structure of the title compound, C22H15ClN2O4S, comprises non-planar mol­ecules that form a one-dimensional hydrogen-bonded chain via a single N—H⋯O interaction, which runs parallel to the b axis. The dihedral angle between the thia­zole and quinone rings is 50.43 (7)° and the dihedral angle between the thia­zole and the phenyl rings is 52.4 (1)°.

Comment

The title compound, (I[link]), was prepared with the intention of merging two separate studies that we have recently undertaken. One study involved the synthesis and structural properties of 2-substituted 3-chloro-1,4-naphtho­quinones (Lynch & McClenaghan, 2002[Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704-o707.]; 2003[Lynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427-o1428.]), while the other involved 2-amino­thia­zoles. From the latter study came the structure of the thia­zole derivative used to prepare (I[link]), viz. ethyl 2-amino-4-phenyl­thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2000[Lynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.]). By bringing together the two series of mol­ecules, we are interested in examining the combined structural aspects of the resultant covalently linked products, especially considering the forced proximity of one N—H hydrogen-bond donor with five hydrogen-bond acceptors (viz. two O atoms, one N atom, one Cl atom and one S atom). The structure of (I[link]) comprises non-planar mol­ecules, the dihedral angle between the thia­zole and quinone rings being 50.43 (7)° and the dihedral angle between the thia­zole and phenyl rings being 52.4 (1)°. The equivalent dihedral angle in the parent thia­zole mol­ecule is 42.41 (6)°.[link]

[Scheme 1]

Molecules of (I[link]) form a one-dimensional hydrogen-bonded chain via a single N—H⋯O interaction [graph set C(6); Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]], which runs parallel to the b axis; hydrogen-bonding geometry is given in Table 1[link]. A close contact C25—H25⋯O21i [C⋯Oi = 3.165 (3) Å, H⋯Oi = 2.22 Å and C—H⋯Oi = 172°; symmetry code: (i) x, 1 + y, z] exists adjacent to the N—H⋯O interaction and thus completes an R22(10) graph-set motif.

[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from an ethanol solution.

Crystal data
  • C22H15ClN2O4S

  • Mr = 438.87

  • Monoclinic, P21/c

  • a = 19.191 (5) Å

  • b = 7.719 (2) Å

  • c = 12.640 (3) Å

  • β = 94.845 (18)°

  • V = 1865.6 (8) Å3

  • Z = 4

  • Dx = 1.563 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4585 reflections

  • θ = 2.9–27.5°

  • μ = 0.35 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.18 × 0.14 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.993

  • 34099 measured reflections

  • 3678 independent reflections

  • 3672 reflections with I > 2σ(I)

  • Rint = 0.068

  • θmax = 26.0°

  • h = −23 → 23

  • k = −9 → 9

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.251

  • S = 1.14

  • 3678 reflections

  • 276 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0933P)2 + 12.2716P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O24i 0.86 (2) 2.27 (2) 3.066 (3) 154 (2)
Symmetry code: (i) x,y-1,z.

The amino H atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions in the riding-model approximation, with C—H distances of 0.95 (aromatic H atoms), 0.98 (CH3 H atoms) and 0.99 Å (CH2 H atoms). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. The high R value in this structure was a direct consequence of poor data from poor-quality twinned crystals; the non-merohedral twinning was refined as two components with ratio 0.5207 (8):0.4793 (8).

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Ethyl 2-(2-chloro-1,4-dihydro-1,4-dioxonaphthalen-3-ylamino)-4-phenylthiazole-5- carboxylate top
Crystal data top
C22H15ClN2O4SF(000) = 904
Mr = 438.87Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4585 reflections
a = 19.191 (5) Åθ = 2.9–27.5°
b = 7.719 (2) ŵ = 0.35 mm1
c = 12.640 (3) ÅT = 120 K
β = 94.845 (18)°Plate, orange
V = 1865.6 (8) Å30.18 × 0.14 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3678 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3672 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.068
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.2°
φ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.939, Tmax = 0.993l = 1515
34099 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.251H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0933P)2 + 12.2716P]
where P = (Fo2 + 2Fc2)/3
3678 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

16.4712 (0.0108) x + 0.7887 (0.0076) y + 5.4172 (0.0114) z = 6.6141 (0.0074)

* -0.0087 (0.0017) C41 * 0.0073 (0.0018) C42 * -0.0018 (0.0017) C43 * -0.0024 (0.0018) C44 * 0.0009 (0.0018) C45 * 0.0046 (0.0017) C46

Rms deviation of fitted atoms = 0.0052

6.6939 (0.0215) x - 4.4720 (0.0052) y + 8.9054 (0.0083) z = 3.3544 (0.0063)

Angle to previous plane (with approximate e.s.d.) = 52.36 (0.10)

* -0.0093 (0.0011) S1 * 0.0086 (0.0013) C2 * -0.0030 (0.0015) N3 * -0.0064 (0.0016) C4 * 0.0100 (0.0014) C5

Rms deviation of fitted atoms = 0.0079

- 3.7776 (0.0170) x + 0.2173 (0.0070) y + 12.5531 (0.0042) z = 2.9615 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 50.43 (0.07)

* -0.0131 (0.0016) C21 * 0.0529 (0.0017) C22 * -0.0496 (0.0017) C23 * 0.0052 (0.0017) C24 * 0.0327 (0.0017) C210 * -0.0280 (0.0016) C29

Rms deviation of fitted atoms = 0.0349

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26243 (3)0.31468 (8)0.33640 (5)0.02098 (16)
C20.31564 (12)0.4837 (3)0.38331 (19)0.0170 (5)
N210.38181 (10)0.4994 (3)0.34992 (16)0.0141 (5)
H210.4059 (12)0.406 (3)0.349 (2)0.018*
N30.29030 (10)0.5864 (3)0.45263 (16)0.0183 (5)
C40.22472 (12)0.5310 (3)0.4737 (2)0.0180 (6)
C50.20140 (12)0.3859 (3)0.4202 (2)0.0192 (6)
C210.49776 (12)0.6183 (3)0.37395 (19)0.0147 (5)
O210.51830 (8)0.4685 (2)0.37840 (14)0.0209 (4)
C220.42034 (12)0.6500 (3)0.35537 (18)0.0133 (5)
C230.39744 (12)0.8138 (3)0.33748 (19)0.0154 (5)
Cl230.31275 (3)0.85753 (8)0.28897 (5)0.02148 (16)
C240.44328 (12)0.9673 (3)0.35298 (19)0.0145 (5)
O240.41967 (8)1.1139 (2)0.34265 (13)0.0174 (4)
C250.56428 (12)1.0748 (3)0.39453 (19)0.0172 (6)
H250.54661.18990.39210.021*
C260.63557 (12)1.0457 (3)0.41421 (19)0.0183 (6)
H260.66671.14070.42650.022*
C270.66129 (12)0.8779 (3)0.41589 (19)0.0194 (6)
H270.71020.85840.42740.023*
C280.61666 (11)0.7400 (4)0.40112 (18)0.0163 (5)
H280.63490.62550.40230.020*
C290.54527 (11)0.7662 (3)0.38451 (18)0.0139 (5)
C2100.51889 (11)0.9356 (3)0.37848 (18)0.0125 (5)
C410.18920 (11)0.6379 (3)0.5512 (2)0.0171 (6)
C420.18634 (13)0.8157 (3)0.5369 (2)0.0228 (6)
H420.20480.86600.47670.027*
C430.15663 (13)0.9210 (4)0.6103 (2)0.0269 (7)
H430.15411.04270.59930.032*
C440.13116 (13)0.8496 (4)0.6980 (2)0.0274 (7)
H440.11100.92150.74830.033*
C450.13472 (13)0.6730 (4)0.7135 (2)0.0277 (7)
H450.11700.62350.77460.033*
C460.16405 (11)0.5670 (3)0.6404 (2)0.0200 (6)
H460.16680.44550.65200.024*
C510.13485 (13)0.2902 (3)0.4126 (2)0.0238 (6)
O510.12084 (11)0.1819 (3)0.34567 (18)0.0498 (6)
O520.09298 (8)0.3353 (2)0.48486 (15)0.0293 (5)
C520.02647 (12)0.2460 (4)0.4842 (2)0.0349 (7)
H510.03260.12130.46910.042*
H520.00730.29510.42870.042*
C530.00022 (14)0.2688 (4)0.5906 (2)0.0426 (8)
H530.03440.22140.64510.064*
H540.04440.20770.59290.064*
H550.00660.39240.60410.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0197 (3)0.0181 (3)0.0254 (4)0.0030 (3)0.0036 (3)0.0041 (3)
C20.0186 (12)0.0146 (13)0.0177 (13)0.0010 (11)0.0007 (11)0.0028 (11)
N210.0152 (10)0.0104 (11)0.0171 (11)0.0003 (9)0.0040 (9)0.0015 (10)
N30.0149 (10)0.0182 (11)0.0219 (12)0.0018 (9)0.0020 (9)0.0002 (10)
C40.0181 (12)0.0171 (14)0.0184 (14)0.0032 (11)0.0015 (10)0.0053 (12)
C50.0172 (12)0.0168 (14)0.0240 (14)0.0040 (11)0.0043 (11)0.0022 (12)
C210.0171 (12)0.0144 (13)0.0130 (13)0.0025 (10)0.0046 (10)0.0002 (10)
O210.0197 (9)0.0098 (9)0.0338 (11)0.0020 (8)0.0052 (8)0.0032 (8)
C220.0163 (12)0.0153 (14)0.0091 (12)0.0009 (11)0.0060 (10)0.0051 (11)
C230.0129 (11)0.0178 (13)0.0160 (13)0.0012 (10)0.0034 (10)0.0018 (11)
Cl230.0146 (3)0.0194 (3)0.0298 (4)0.0023 (3)0.0016 (3)0.0021 (3)
C240.0171 (12)0.0175 (14)0.0094 (12)0.0007 (11)0.0041 (10)0.0002 (11)
O240.0201 (9)0.0091 (9)0.0235 (10)0.0042 (7)0.0050 (8)0.0014 (8)
C250.0231 (13)0.0115 (13)0.0179 (14)0.0029 (11)0.0069 (11)0.0005 (11)
C260.0214 (13)0.0193 (14)0.0146 (13)0.0032 (11)0.0037 (11)0.0031 (11)
C270.0159 (12)0.0248 (15)0.0176 (14)0.0011 (11)0.0014 (10)0.0014 (12)
C280.0181 (11)0.0147 (12)0.0163 (13)0.0042 (12)0.0021 (10)0.0033 (11)
C290.0171 (11)0.0123 (13)0.0129 (12)0.0002 (11)0.0053 (9)0.0001 (11)
C2100.0151 (11)0.0118 (13)0.0105 (12)0.0006 (10)0.0006 (10)0.0008 (10)
C410.0091 (11)0.0207 (15)0.0207 (14)0.0004 (11)0.0038 (10)0.0054 (12)
C420.0203 (13)0.0240 (15)0.0244 (15)0.0003 (11)0.0036 (11)0.0008 (13)
C430.0232 (14)0.0210 (16)0.0359 (18)0.0013 (12)0.0007 (13)0.0042 (13)
C440.0170 (13)0.0301 (18)0.0352 (18)0.0001 (13)0.0032 (12)0.0177 (14)
C450.0210 (14)0.0423 (18)0.0207 (15)0.0014 (13)0.0076 (12)0.0045 (14)
C460.0123 (12)0.0204 (15)0.0275 (15)0.0014 (11)0.0023 (11)0.0027 (13)
C510.0189 (13)0.0263 (18)0.0260 (15)0.0040 (11)0.0012 (11)0.0039 (13)
O510.0413 (12)0.0531 (15)0.0573 (15)0.0240 (11)0.0181 (11)0.0294 (13)
O520.0196 (9)0.0287 (11)0.0403 (12)0.0105 (8)0.0070 (9)0.0090 (10)
C520.0184 (12)0.0387 (16)0.0480 (19)0.0134 (15)0.0050 (12)0.0016 (17)
C530.0273 (14)0.045 (2)0.057 (2)0.0103 (16)0.0147 (14)0.0055 (18)
Geometric parameters (Å, º) top
S1—C21.731 (2)C27—H270.95
S1—C51.733 (2)C28—C291.383 (3)
C2—N31.306 (3)C28—H280.95
C2—N211.377 (3)C29—C2101.402 (3)
N21—C221.376 (3)C41—C461.377 (3)
N21—H210.86 (2)C41—C421.384 (3)
N3—C41.377 (3)C42—C431.391 (3)
C4—C51.365 (3)C42—H420.95
C4—C411.489 (3)C43—C441.365 (4)
C5—C511.471 (3)C43—H430.95
C21—O211.222 (3)C44—C451.377 (4)
C21—C291.460 (3)C44—H440.95
C21—C221.504 (3)C45—C461.388 (3)
C22—C231.351 (3)C45—H450.95
C23—C241.479 (3)C46—H460.95
C23—Cl231.721 (2)C51—O511.204 (3)
C24—O241.222 (3)C51—O521.313 (3)
C24—C2101.480 (3)O52—C521.450 (3)
C25—C2101.388 (3)C52—C531.486 (4)
C25—C261.388 (3)C52—H510.99
C25—H250.95C52—H520.99
C26—C271.386 (3)C53—H530.98
C26—H260.95C53—H540.98
C27—C281.369 (3)C53—H550.98
C2—S1—C587.78 (12)C28—C29—C21120.2 (2)
N3—C2—N21123.9 (2)C210—C29—C21120.3 (2)
N3—C2—S1116.45 (18)C25—C210—C29119.7 (2)
N21—C2—S1119.59 (18)C25—C210—C24119.7 (2)
C2—N21—C22124.3 (2)C29—C210—C24120.6 (2)
C2—N21—H21116.4 (16)C46—C41—C42119.2 (2)
C22—N21—H21115.1 (16)C46—C41—C4122.0 (2)
C2—N3—C4109.9 (2)C42—C41—C4118.6 (2)
C5—C4—N3115.2 (2)C41—C42—C43120.4 (3)
C5—C4—C41129.2 (2)C41—C42—H42119.8
N3—C4—C41115.6 (2)C43—C42—H42119.8
C4—C5—C51133.7 (2)C44—C43—C42120.0 (3)
C4—C5—S1110.68 (18)C44—C43—H43120.0
C51—C5—S1115.40 (19)C42—C43—H43120.0
O21—C21—C29122.6 (2)C43—C44—C45119.9 (3)
O21—C21—C22118.1 (2)C43—C44—H44120.1
C29—C21—C22119.2 (2)C45—C44—H44120.1
C23—C22—N21128.0 (2)C44—C45—C46120.4 (3)
C23—C22—C21118.7 (2)C44—C45—H45119.8
N21—C22—C21113.0 (2)C46—C45—H45119.8
C22—C23—C24123.1 (2)C41—C46—C45120.0 (3)
C22—C23—Cl23121.81 (18)C41—C46—H46120.0
C24—C23—Cl23115.03 (18)C45—C46—H46120.0
O24—C24—C23121.1 (2)O51—C51—O52124.0 (2)
O24—C24—C210121.6 (2)O51—C51—C5122.4 (2)
C23—C24—C210117.2 (2)O52—C51—C5113.6 (2)
C210—C25—C26119.9 (2)C51—O52—C52117.4 (2)
C210—C25—H25120.1O52—C52—C53107.7 (2)
C26—C25—H25120.1O52—C52—H51110.2
C27—C26—C25119.9 (2)C53—C52—H51110.2
C27—C26—H26120.0O52—C52—H52110.2
C25—C26—H26120.0C53—C52—H52110.2
C28—C27—C26120.4 (2)H51—C52—H52108.5
C28—C27—H27119.8C52—C53—H53109.5
C26—C27—H27119.8C52—C53—H54109.5
C27—C28—C29120.5 (2)H53—C53—H54109.5
C27—C28—H28119.8C52—C53—H55109.5
C29—C28—H28119.8H53—C53—H55109.5
C28—C29—C210119.5 (2)H54—C53—H55109.5
C5—S1—C2—N31.5 (2)O21—C21—C29—C280.5 (4)
C5—S1—C2—N21176.1 (2)C22—C21—C29—C28179.7 (2)
N3—C2—N21—C2222.7 (4)O21—C21—C29—C210179.8 (2)
S1—C2—N21—C22159.94 (19)C22—C21—C29—C2100.7 (3)
N21—C2—N3—C4176.5 (2)C26—C25—C210—C291.4 (4)
S1—C2—N3—C40.9 (3)C26—C25—C210—C24177.4 (2)
C2—N3—C4—C50.3 (3)C28—C29—C210—C253.2 (3)
C2—N3—C4—C41179.5 (2)C21—C29—C210—C25176.4 (2)
N3—C4—C5—C51175.2 (3)C28—C29—C210—C24175.5 (2)
C41—C4—C5—C514.5 (5)C21—C29—C210—C244.8 (3)
N3—C4—C5—S11.4 (3)O24—C24—C210—C252.1 (4)
C41—C4—C5—S1178.3 (2)C23—C24—C210—C25179.6 (2)
C2—S1—C5—C41.54 (19)O24—C24—C210—C29176.7 (2)
C2—S1—C5—C51176.6 (2)C23—C24—C210—C291.7 (3)
C2—N21—C22—C2338.4 (4)C5—C4—C41—C4654.9 (4)
C2—N21—C22—C21147.6 (2)N3—C4—C41—C46125.4 (2)
O21—C21—C22—C23172.1 (2)C5—C4—C41—C42130.2 (3)
C29—C21—C22—C237.1 (3)N3—C4—C41—C4249.6 (3)
O21—C21—C22—N212.5 (3)C46—C41—C42—C431.8 (4)
C29—C21—C22—N21178.3 (2)C4—C41—C42—C43176.9 (2)
N21—C22—C23—C24175.7 (2)C41—C42—C43—C441.2 (4)
C21—C22—C23—C2410.7 (4)C42—C43—C44—C450.2 (4)
N21—C22—C23—Cl237.3 (4)C43—C44—C45—C460.0 (4)
C21—C22—C23—Cl23166.42 (17)C42—C41—C46—C451.6 (4)
C22—C23—C24—O24175.2 (2)C4—C41—C46—C45176.5 (2)
Cl23—C23—C24—O247.6 (3)C44—C45—C46—C410.7 (4)
C22—C23—C24—C2106.5 (4)C4—C5—C51—O51166.3 (3)
Cl23—C23—C24—C210170.78 (17)S1—C5—C51—O517.3 (4)
C210—C25—C26—C271.1 (4)C4—C5—C51—O5213.3 (4)
C25—C26—C27—C281.8 (4)S1—C5—C51—O52173.10 (18)
C26—C27—C28—C290.1 (4)O51—C51—O52—C521.1 (4)
C27—C28—C29—C2102.6 (4)C5—C51—O52—C52179.2 (2)
C27—C28—C29—C21177.0 (2)C51—O52—C52—C53160.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O24i0.86 (2)2.27 (2)3.066 (3)154 (2)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002). Acta Cryst. C58, o704–o707.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2003). Acta Cryst. E59, o1427–o1428.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds