organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(Meth­oxy­glycyl)­carbonyl]­tetra­thia­fulvalene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bSunderland Pharmacy School – Drug Design and Synthesis, University of Sunderland, Wharncliffe Street, Sunderland SR1 3SD, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 1 February 2005; accepted 3 February 2005; online 12 February 2005)

The title compound, C10H9NO3S4, has a nearly planar tetra­thia­fulvalene–amide moiety and an ester group normal to it. Molecules in the crystal structure are linked by S⋯O interactions and N—H⋯O hydrogen bonds.

Comment

The chemistry of tetra­thia­fulvalene (TTF) and its derivatives has been at the forefront of research in the field of organic conductors for over 30 years (Bendikov et al., 2004[Bendikov, M., Wudl, F. & Perepichka, D. F. (2004). Chem. Rev. 104, 4891-4946.]). As the physical properties displayed by these materials depend on the intermolecular architecture, tetra­thia­fulvalene derivatives bearing substituents which can participate in hydrogen bonding have been actively investigated as an approach to improving the dimensionality of intermolecular interactions in their charge-transfer complexes (Fourmigué & Batail, 2004[Fourmigué, M. & Batail, P. (2004). Chem. Rev. 104, 5379-5418.]). Derivatives bearing functionalities such as alcohols, amides, thio­amides, amines, and carboxyl­ic and nucleic acids have all been studied. Booth et al. (1998[Booth, S., Wallace, E. N. K., Shingal, K., Bartlett, P. N. & Kilburn, J. D. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1467-1474.]) investigated the incorporation of TTF-bearing amino acids into a polypeptide backbone with the aim of controlling the spatial arrangements of the TTF units. In the present paper, we report the crystal structure of tetra­thia­fulvalene bearing a pendant glycine methyl ester chain to investigate potential hydrogen bonding in the neutral state which may, possibly, be manifested in charge-transfer complexes and radical ion salts.[link]

[Scheme 1]

In the title mol­ecule, (I[link]) (Fig. 1[link]), the TTF-amide moiety is nearly planar, except for a small folding along the S1⋯S2 vector [6.8 (1)°] and a twist around the C2—C7 bond [8.5 (1)°]. The planar ester moiety, however, is inclined to the plane of the adjacent amido group by 86.1 (1)°. Such a conformation hinders the formation of a continuous stacking motif, although mol­ecules do form centrosymmetric face-to-face dimers with a longitudinal offset, so that a di­thiole ring of one mol­ecule overlaps with the central C1=C4 bond of another. The mean planes of the two TTF moieties within the dimer are strictly parallel, with an interplanar separation of 3.48 (1) Å. Bond distances in (I[link]) are similar to those in the two previously studied amide derivatives of TTF (Batsanov et al., 1994[Batsanov, A. S., Bryce, M. R., Cooke, G., Dhindsa, A. S., Heaton, J. N., Howard, J. A. K., Moore, A. J. & Petty, M. C. (1994). Chem. Mater. 6, 1419-1425.], 1995[Batsanov, A. S., Bryce, M. R., Heaton, J. N., Moore, A. J., Skabara, P. J., Howard, J. A. K., Orti, E., Viruela, P. M. & Viruela, R. (1995). J. Mater. Chem. 5, 1689-1696.]). In particular, the bond distances S1—C2 [1.759 (1) Å] and S2—C3 [1.728 (1) Å] differ substantially, due to π-conjugation with the amide C7=O1 bond.

In the crystal structure, intermolecular N—H⋯O hydrogen bonds (Table 2[link]) link the mol­ecules into infinite chains, parallel to the b axis. The chains are further linked into a three-dimensional motif (Fig. 2[link]) by intermolecular S⋯O contacts [S2⋯O3i = 3.055 (1) Å and S4⋯O2ii = 3.243 (1) Å; symmetry codes: (i) −x, y − ½, ½ − z; (ii) x + 1, ½ − y, z − ½], which are substantially shorter than the sum of van der Waals radii of S and O (3.39 Å) according to Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]).

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing atomic displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of (I[link]), showing hydrogen bonds (dashed) and short S⋯O contacts (dotted lines) [symmetry codes: (i) −x, y − ½, ½ − z; (ii) x + 1, ½ − y, z − ½; (iii) −x, y + ½, ½ − z].

Experimental

Dry triethyl­amine (0.63 ml, 4.53 mol) was added to a solution of glycine methyl ester hydro­chloride, MeO2CCH2NH3+·Cl (0.21 g, 1.66 mmol), in dry di­chloro­methane (20 ml) and the solution was stirred for 30 min at room temperature under dry nitro­gen. A solution of 4-fluoro­carbonyl­tetra­thia­fulvalene (0.38 g, 1.52 mmol) (Cooke et al., 1999[Cooke, G., Rotello, V. M. & Radhi, A. (1999). Tetrahedron Lett. 40, 8611-8613.]) in dry di­chloro­methane (20 ml) was added and stirring continued overnight. The organics were washed with water (3 × 25 ml), dried over MgSO4 and evaporated. Column chroma­tog­raphy of the residue, eluting initially with di­chloro­methane to remove trace impurities, and subsequently ethyl acetate afforded (I[link]) (0.42, yield 87%) as a red crystalline solid, m/z (LC–MS) 318.9 (M+, 100%); 1H NMR (CDCl3): δ 8.96 (1H, t, J 5.8), 7.57 (1H, s), 6.75 (2H, s), 3.91 (2H, d, J 5.8), 3.65 (3H, s); IR (KBr) (cm−1): 3324, 3034, 1741, 1613, 1543, 1213. A crystal of X-ray quality was grown by slow evaporation of an ethyl acetate solution (m.p. 325–327 K).

Crystal data
  • C10H9NO3S4

  • Mr = 319.42

  • Monoclinic, P21/c

  • a = 8.9306 (11) Å

  • b = 10.0106 (12) Å

  • c = 14.4694 (17) Å

  • β = 94.02 (1)°

  • V = 1290.4 (3) Å3

  • Z = 4

  • Dx = 1.644 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 896 reflections

  • θ = 12.1–26.4°

  • μ = 0.73 mm−1

  • T = 120 (2) K

  • Plate, red

  • 0.24 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: by integration (XPREP in SHELXTL; Bruker, 2001[Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.945

  • 15591 measured reflections

  • 3448 independent reflections

  • 2992 reflections with I > 2σ(I)

  • Rint = 0.040

  • θmax = 29.1°

  • h = −12 → 12

  • k = −13 → 13

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.04

  • 3448 reflections

  • 199 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.041P)2 + 0.4425P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.7562 (14)
S1—C2 1.7590 (14)
S2—C3 1.7281 (14)
S2—C1 1.7644 (14)
S3—C5 1.7430 (16)
S3—C4 1.7603 (14)
S4—C6 1.7302 (16)
S4—C4 1.7560 (14)
O1—C7 1.2413 (16)
O2—C9 1.2012 (18)
O3—C9 1.3359 (16)
O3—C10 1.4524 (18)
N—C7 1.3405 (18)
N—C8 1.4463 (17)
C1—C4 1.3465 (19)
C2—C3 1.3402 (19)
C2—C7 1.4818 (18)
C5—C6 1.325 (2)
C8—C9 1.521 (2)
C1—S1—C2 94.33 (6)
C3—S2—C1 94.93 (7)
C5—S3—C4 94.76 (7)
C6—S4—C4 94.91 (7)
C9—O3—C10 117.19 (12)
C7—N—C8 119.19 (12)
S1—C1—S2 114.66 (7)
C3—C2—C7 127.85 (12)
C3—C2—S1 117.44 (10)
C7—C2—S1 114.68 (9)
C2—C3—S2 118.05 (11)
S4—C4—S3 114.33 (7)
C6—C5—S3 117.56 (12)
C5—C6—S4 118.41 (12)
O1—C7—N 122.00 (12)
O1—C7—C2 119.67 (12)
N—C7—C2 118.32 (12)
C3—C2—C7—N 7.7 (2)
C2—C7—N—C8 −179.08 (12)
C7—N—C8—C9 −76.58 (16)
N—C8—C9—O3 156.57 (11)
C8—C9—O3—C10 179.65 (12)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1N⋯O1i 0.84 (2) 2.13 (2) 2.9688 (15) 177.0 (19)
Symmetry code: (i) [-x,y-{\script{1\over 2}},{\script{1\over 2}}-z].

All H atoms were located in a difference Fourier map and refined freely in an isotropic approximation, bond distances Csp3—H = 0.91 (2)–0.97 (2) Å and Csp2—H = 0.86 (2)–0.94 (3) Å.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.049. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

4-[(Methoxyglycyl)carbonyl]tetrathiafulvalene top
Crystal data top
C10H9NO3S4F(000) = 656
Mr = 319.42Dx = 1.644 Mg m3
Monoclinic, P21/cMelting point = 425–427 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9306 (11) ÅCell parameters from 896 reflections
b = 10.0106 (12) Åθ = 12.1–26.4°
c = 14.4694 (17) ŵ = 0.73 mm1
β = 94.02 (1)°T = 120 K
V = 1290.4 (3) Å3Plate, red
Z = 40.24 × 0.23 × 0.08 mm
Data collection top
SMART 1K CCD area-detector
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube2992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8 pixels mm-1θmax = 29.1°, θmin = 2.3°
ω scansh = 1212
Absorption correction: integration
(XPREP in SHELXTL; Bruker, 2001)
k = 1313
Tmin = 0.825, Tmax = 0.945l = 1919
15591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.075All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.041P)2 + 0.4425P]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different φ and/or 2θ angles and each scan (10 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.42 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31654 (4)0.50901 (4)0.20571 (3)0.02545 (10)
S20.37980 (4)0.24574 (3)0.12324 (2)0.02162 (9)
S30.63853 (4)0.61947 (3)0.12774 (2)0.02232 (9)
S40.68464 (4)0.34903 (4)0.05305 (3)0.02224 (9)
O10.02409 (11)0.54268 (9)0.27543 (7)0.0204 (2)
O20.06966 (12)0.33910 (11)0.46168 (7)0.0278 (2)
O30.27565 (11)0.46906 (10)0.44306 (7)0.0229 (2)
N0.06180 (13)0.33054 (12)0.26651 (8)0.0199 (2)
H1N0.049 (2)0.250 (2)0.2532 (13)0.033 (5)*
C10.43760 (15)0.41264 (14)0.14217 (9)0.0192 (3)
C20.17682 (15)0.38517 (13)0.20570 (9)0.0167 (2)
C30.20686 (15)0.26681 (14)0.16786 (9)0.0184 (3)
H30.143 (2)0.1965 (19)0.1643 (12)0.023 (4)*
C40.56732 (15)0.45663 (13)0.11097 (9)0.0180 (3)
C50.80147 (17)0.58979 (17)0.07135 (12)0.0291 (3)
H50.863 (3)0.656 (2)0.0678 (15)0.046 (6)*
C60.82101 (18)0.46829 (17)0.03798 (13)0.0329 (4)
H60.899 (3)0.434 (3)0.0050 (18)0.072 (8)*
C70.04009 (15)0.42488 (13)0.25122 (9)0.0166 (2)
C80.19709 (16)0.36759 (14)0.30959 (10)0.0197 (3)
H810.239 (2)0.4480 (19)0.2811 (12)0.026 (4)*
H820.267 (2)0.2993 (19)0.3017 (12)0.027 (5)*
C90.16922 (16)0.38916 (13)0.41340 (10)0.0193 (3)
C100.2678 (2)0.50040 (17)0.54129 (11)0.0271 (3)
H1010.241 (3)0.428 (3)0.5770 (15)0.052 (6)*
H1020.190 (3)0.565 (3)0.5534 (16)0.059 (7)*
H1030.358 (3)0.537 (2)0.5529 (15)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02847 (19)0.01606 (17)0.0340 (2)0.00665 (13)0.01746 (15)0.00825 (13)
S20.02446 (18)0.01328 (16)0.02883 (18)0.00260 (12)0.01403 (14)0.00290 (12)
S30.02395 (18)0.01692 (17)0.02674 (18)0.00515 (13)0.00641 (14)0.00386 (13)
S40.01893 (17)0.01847 (17)0.03028 (19)0.00185 (13)0.00848 (13)0.00419 (13)
O10.0228 (5)0.0133 (4)0.0257 (5)0.0007 (4)0.0059 (4)0.0016 (4)
O20.0263 (5)0.0292 (6)0.0283 (5)0.0084 (5)0.0058 (4)0.0069 (4)
O30.0251 (5)0.0212 (5)0.0231 (5)0.0066 (4)0.0067 (4)0.0002 (4)
N0.0219 (6)0.0131 (5)0.0257 (6)0.0011 (4)0.0090 (5)0.0015 (4)
C10.0220 (7)0.0150 (6)0.0216 (6)0.0021 (5)0.0078 (5)0.0019 (5)
C20.0192 (6)0.0137 (6)0.0178 (6)0.0012 (5)0.0048 (5)0.0016 (5)
C30.0194 (6)0.0150 (6)0.0215 (6)0.0022 (5)0.0072 (5)0.0007 (5)
C40.0205 (6)0.0151 (6)0.0187 (6)0.0018 (5)0.0044 (5)0.0014 (5)
C50.0199 (7)0.0261 (8)0.0423 (9)0.0086 (6)0.0088 (6)0.0039 (7)
C60.0196 (7)0.0287 (8)0.0521 (10)0.0067 (6)0.0152 (7)0.0069 (7)
C70.0188 (6)0.0152 (6)0.0161 (6)0.0019 (5)0.0032 (5)0.0014 (5)
C80.0171 (6)0.0168 (6)0.0260 (7)0.0006 (5)0.0061 (5)0.0010 (5)
C90.0199 (6)0.0132 (6)0.0258 (6)0.0004 (5)0.0081 (5)0.0033 (5)
C100.0345 (9)0.0247 (8)0.0228 (7)0.0039 (7)0.0073 (6)0.0012 (6)
Geometric parameters (Å, º) top
S1—C11.7562 (14)N—H1N0.84 (2)
S1—C21.7590 (14)C1—C41.3465 (19)
S2—C31.7281 (14)C2—C31.3402 (19)
S2—C11.7644 (14)C2—C71.4818 (18)
S3—C51.7430 (16)C3—H30.905 (19)
S3—C41.7603 (14)C5—C61.325 (2)
S4—C61.7302 (16)C5—H50.86 (2)
S4—C41.7560 (14)C6—H60.94 (3)
O1—C71.2413 (16)C8—C91.521 (2)
O2—C91.2012 (18)C8—H810.966 (19)
O3—C91.3359 (16)C8—H820.927 (19)
O3—C101.4524 (18)C10—H1010.91 (2)
N—C71.3405 (18)C10—H1020.96 (3)
N—C81.4463 (17)C10—H1030.91 (2)
C1—S1—C294.33 (6)S3—C5—H5116.9 (15)
C3—S2—C194.93 (7)C5—C6—S4118.41 (12)
C5—S3—C494.76 (7)C5—C6—H6130.0 (17)
C6—S4—C494.91 (7)S4—C6—H6111.6 (17)
C9—O3—C10117.19 (12)O1—C7—N122.00 (12)
C7—N—C8119.19 (12)O1—C7—C2119.67 (12)
C7—N—H1N122.2 (14)N—C7—C2118.32 (12)
C8—N—H1N118.6 (14)N—C8—C9112.23 (12)
C4—C1—S1124.86 (11)N—C8—H81109.7 (11)
C4—C1—S2120.46 (11)C9—C8—H81109.5 (11)
S1—C1—S2114.66 (7)N—C8—H82109.5 (11)
C3—C2—C7127.85 (12)C9—C8—H82106.7 (11)
C3—C2—S1117.44 (10)H81—C8—H82109.1 (15)
C7—C2—S1114.68 (9)O2—C9—O3125.26 (13)
C2—C3—S2118.05 (11)O2—C9—C8125.35 (13)
C2—C3—H3124.6 (11)O3—C9—C8109.36 (12)
S2—C3—H3117.4 (11)O3—C10—H101112.1 (15)
C1—C4—S4121.03 (11)O3—C10—H102108.1 (14)
C1—C4—S3124.59 (11)H101—C10—H102106 (2)
S4—C4—S3114.33 (7)O3—C10—H103106.5 (14)
C6—C5—S3117.56 (12)H101—C10—H103115 (2)
C6—C5—H5125.5 (15)H102—C10—H103109 (2)
C3—C2—C7—N7.7 (2)N—C8—C9—O3156.57 (11)
C2—C7—N—C8179.08 (12)C8—C9—O3—C10179.65 (12)
C7—N—C8—C976.58 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O1i0.84 (2)2.13 (2)2.9688 (15)177.0 (19)
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

SLV thanks the University of Sunderland for financial support.

References

First citationBatsanov, A. S., Bryce, M. R., Cooke, G., Dhindsa, A. S., Heaton, J. N., Howard, J. A. K., Moore, A. J. & Petty, M. C. (1994). Chem. Mater. 6, 1419–1425.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatsanov, A. S., Bryce, M. R., Heaton, J. N., Moore, A. J., Skabara, P. J., Howard, J. A. K., Orti, E., Viruela, P. M. & Viruela, R. (1995). J. Mater. Chem. 5, 1689–1696.  CSD CrossRef CAS Web of Science Google Scholar
First citationBendikov, M., Wudl, F. & Perepichka, D. F. (2004). Chem. Rev. 104, 4891–4946.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBooth, S., Wallace, E. N. K., Shingal, K., Bartlett, P. N. & Kilburn, J. D. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1467–1474.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART. Version 5.049. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooke, G., Rotello, V. M. & Radhi, A. (1999). Tetrahedron Lett. 40, 8611–8613.  Web of Science CrossRef CAS Google Scholar
First citationFourmigué, M. & Batail, P. (2004). Chem. Rev. 104, 5379–5418.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds