Acta Crystallographica Section E **Structure Reports** Online

# Nigel McSweeney,<sup>a</sup> Albert C. Pratt,<sup>a</sup> Conor Long<sup>a</sup> and R. Alan Howie<sup>b</sup>\*

<sup>a</sup>School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and <sup>b</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: r.a.howie@abdn.ac.uk

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.005 Å R factor = 0.088 wR factor = 0.192 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

ISSN 1600-5368

The title 1,4-photoadduct, C<sub>21</sub>H<sub>19</sub>NO<sub>3</sub>, was formed on irra-

diation of N-benzoylphthalimide in dichloromethane contain-

ing cyclohexene. The bond lengths and angles are generally

within the normal ranges. A notable feature of the molecule is

the presence within it of four contiguous chiral centres.

dodeca-9,11-diene-1,10-dicarboximide

(1RS,2SR,7RS,8RS)-N-Benzoyltricyclo[6.2.2.0<sup>2,7</sup>]-

Received 20 January 2005 Accepted 25 January 2005 Online 5 February 2005

### Comment

The photochemistry of phthalimides has been studied extensively and has been reviewed by Kanaoka (1978), Coyle (1984) and Oelgemöller & Griesbeck (2002). Schwack (1987) has reported the photo-induced para-cycloaddition of cyclohexene to N-trichloromethylthio-, N-methyl- and N-phenylphthalimides. Suau et al. (1989) have reported the ortho- and para-photocycloaddition of 3-methoxy-N-methylphthalimide to 1-hexene and Kubo et al. (1989) have reported analogous ortho- and para-cycloadditions of N-methylphthalimide to allyltrimethylsilane. In each case, the para-cycloaddition products are structurally analogous to the title compound, (I). However, the structures were only elucidated by spectroscopic means and lack stereochemical certainty. The determination of the structure of (I) presented here was undertaken in the context of a study of the photochemistry of N-benzoylphthalimide but is clearly of significance in relation to the analogous compounds.



The molecule of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The bond lengths, along with those of the phenyl group R1 defined by C16-C21 in the range 1.361 (6)–1.389 (5) Å, are not unusual excepting, perhaps, the C2-C3 and C6-C7 bond lengths of 1.493 (5) and 1.481 (5) Å, respectively. Likewise, with the sole exception of the angle C9-C10-C14 of 134.1  $(3)^{\circ}$ , the bond angles, including the internal angles of the phenyl group in the range 117.9 (3)-121.1 (4)°, are as expected. The cyclohexane ring, R3, defined by C2–C7, adopts the chair conformation, with puckering parameters (Cremer & Pople, 1975) Q =0.564 (4) Å,  $\theta = 168.5$  (5) and  $\varphi = 151$  (2)°. The dihedral angle between the least-squares planes of phenyl group R1 (r.m.s. displacement = 0.0006 Å) and five-membered ring R2, defined by C1/C10/C13-C14/N1 (r.m.s. displacement = 0.0143 Å) is 61.97 (15)°. Atom O3 is displaced from the least-squares

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

planes of R1 and R2 by 0.145 (7) and 1.134 (6) Å, respectively. The packing of the molecules of (I) creates layers parallel to (102) (Fig. 2) in such a way as to generate the first two C-H··· $\pi$  interactions given in Table 2 (shown as dashed lines in Fig. 2). The only contact between the layers, other than van der Waals interactions, is the third, longer,  $C-H\cdots\pi$  contact given in Table 2.

The racemic nature of (I), a prerequisite for the refinement of the structure in the centrosymmetric space group  $P2_1/c$ , is a natural consequence of the manner in which the compound has been formed from achiral reactants. In principle, given that the unsymmetrical 1,4-addition across the aromatic ring must of necessity be cis, there are four possible racemic products, two involving trans ring junctions at C2-C7 and two involving cis junctions at C2-C7. Formation of the single unsymmetrical product, (I), suggests a favoured approach by the cyclohexene to the excited phthalimide, possibly involving minimization of steric interactions between the N-benzoylimide and cyclohexene rings in the transition state. The stereochemistry at the C2–C7 ring junction is the outcome of overall trans addition across the cyclohexene double bond.

## **Experimental**

Compound (I) was one of the products of irradiation for 40 h of Nbenzoylphthalimide (2.90 g, 11.5 mmol) and cyclohexene (19.60 g, 239.0 mmol) in dichloromethane (300 ml) by a 400 W medium-pressure mercury vapour lamp fitted with a Pyrex filter. After removal of solvents under vacuum three products (previously detected by thinlayer chromatography) were isolated by means of a Chromatotron and a 4 mm silica plate with a mixture of dichloromethane and light petroleum (b.p. 313-333 K) (2:98 increased stepwise to 60:40) as eluant to yield: (i) recovered N-benzoylphthalimide (2.75 g); (ii) a mixture of minor products as a colourless oil (12 mg); (iii) compound (I), a white crystalline solid [160 mg, 80%; m.p. 411-413 K (from chloroform/light petroleum, b.p. 363–373 K)],  $\lambda_{max}$  (MeCN): 251 ( $\varepsilon$ 20,208 dm<sup>3</sup> mol<sup>-1</sup> cm<sup>-1</sup>); v<sub>max</sub> 2929 (aliphatic CH), 1717 and 1694 (C=O), 1297 and 1252 cm<sup>-1</sup>;  $\delta_H$  (270 MHz, CDCl<sub>3</sub>): 7.89–7.47 (5H, m, ArH), 7.10 (1H, d, J 6.0 Hz, vinylic H), 6.82 (1H, d of d, J 6.0 Hz, J 7.0 Hz, vinylic H), 6.16 (1H, d, J 7.0 Hz, vinylic H), 3.76 (1H, t, J 6.0 Hz), 2.10–1.11 (10H, m, cyclohexane derived moiety);  $\delta_{\rm C}$ (67.8 MHz, CDCl<sub>3</sub>): 173.0, 167.1, 162.3 (carbonyl C), 143.3, 141.7, 137.3, 134.8, 131.9, 130.4, 128.8, 123.5 (aromatic and vinylic C), 56.2, 52.5, 50.7, 45.7, 32.7, 30.2, 27.7 and 27.4 (aliphatic C); analysis found: C 75.3, H 5.8, N 3.9%; C<sub>21</sub>H<sub>19</sub>NO<sub>3</sub> requires: C 75.7, H 5.8, N 4.2%; m/ e: 333 (1), 265 (47), 264 (31), 252 (56), 105 (100), 77 (63) and 67 (45%).

#### Crystal data

| $C_{21}H_{19}NO_3$             |
|--------------------------------|
| $M_r = 333.37$                 |
| Monoclinic, $P2_1/c$           |
| $a = 8.111 (3) \text{ Å}_{1}$  |
| b = 12.999 (7) Å               |
| c = 16.256 (5)  Å              |
| $\beta = 100.76 \ (3)^{\circ}$ |
| $V = 1683.8 (12) \text{ Å}^3$  |
| Z = 4                          |

 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation Cell parameters from 14 reflections  $\theta = 11.0 - 13.0^{\circ}$  $\mu=0.09~\mathrm{mm}^{-1}$ T = 298 (2) KBlock, colourless  $0.60 \times 0.40 \times 0.26 \ \mathrm{mm}$ 

#### Data collection

| Nicolet P3 four-circle                 |
|----------------------------------------|
| diffractometer                         |
| $\theta$ –2 $\theta$ scans             |
| Absorption correction: none            |
| 3882 measured reflections              |
| 3882 independent reflections           |
| 1880 reflections with $I > 2\sigma(I)$ |
|                                        |

## Refinement

| Refinement on $F^2$             | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.088$ | $w = 1/[\sigma^2(F_o^2) + (0.0735P)^2]$                    |
| $wR(F^2) = 0.192$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.03                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 3882 reflections                | $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 226 parameters                  | $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ \AA}^{-3}$ |

 $\theta_{\rm max} = 30.1^{\circ}$ 

 $h = 0 \rightarrow 11$ 

 $k = 0 \rightarrow 18$  $l = -22 \rightarrow 22$ 

2 standard reflections

every 50 reflections intensity decay: none

## Table 1

Selected geometric parameters (Å, °).

| N1-C13                     | 1.408 (4)            | C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.493 (5)            |
|----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| N1-C14                     | 1.425 (4)            | C2-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.514 (5)            |
| N1-C15                     | 1.444 (4)            | C6-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.481 (5)            |
| O1-C13                     | 1.203 (4)            | C7-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.584 (5)            |
| O2-C14                     | 1.200 (4)            | C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.506 (5)            |
| O3-C15                     | 1.194 (4)            | C8-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.519 (5)            |
| C1-C11                     | 1.500 (5)            | C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.330 (4)            |
| C1-C13                     | 1.504 (5)            | C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.462 (5)            |
| C1-C10                     | 1.504 (4)            | C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.323 (5)            |
| C1-C2                      | 1.571 (4)            | C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.473 (5)            |
| C12 N1 C14                 | 112.0 (2)            | C12 C8 C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.8 (2)            |
| C13 = N1 = C14             | 113.0(3)<br>121.2(2) | $C_{12} = C_8 = C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0(3)<br>112.1(2) |
| C13 = N1 = C13             | 121.3(3)<br>125.0(3) | $C_{10} = C_{9} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.1(3)<br>1241(3)  |
| C14 = N1 = C13             | 123.0(3)<br>118.0(3) | $C_{9} = C_{10} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.1(3)<br>1154(3)  |
| $C_{11} = C_{1} = C_{13}$  | 118.0(3)<br>108.2(3) | $C_{3} = C_{10} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.4(3)<br>110.2(2) |
| $C_{11} = C_{11} = C_{10}$ | 108.2(3)<br>103.4(3) | $C_{14} = C_{10} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.3(3)<br>112.2(3) |
| $C_{13} = C_{1} = C_{10}$  | 103.4(3)<br>100.4(3) | $C_{12} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.2(3)<br>1145(3)  |
| $C_{11} = C_{1} = C_{2}$   | 109.4(3)<br>114.2(3) | C11 - C12 - C8<br>O1 - C13 - N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.3(3)<br>124.0(3) |
| $C_{13} = C_{1} = C_{2}$   | 114.3(3)<br>102.0(3) | O1 - C13 - N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124.0(3)<br>127.0(3) |
| $C_{10} = C_{1} = C_{2}$   | 102.0(3)<br>110.4(3) | N1 C13 C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.9(3)<br>1081(3)  |
| $C_{3} = C_{2} = C_{1}$    | 110.4(3)<br>124.6(3) | $O_2 C_1 A N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.1(3)<br>123.0(3) |
| $C_{7} C_{2} C_{1}$        | 124.0(3)<br>107.4(3) | $O_2 = C_1 + C_1 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123.9(3)<br>130.9(3) |
| $C_{1} = C_{2} = C_{1}$    | 107.4(3)<br>110.8(3) | $N_1 = C_1 - C_1 $ | 105.9(3)             |
| $C_{0} = C_{7} = C_{2}$    | 110.8(3)<br>122.4(3) | $O_{2}^{2} C_{15}^{15} N_{1}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 105.1(3)<br>118.4(3) |
| $C_{0} = C_{7} = C_{8}$    | 122.4(3)<br>100.0(3) | $O_{3}^{-}$ $C_{15}^{-}$ $C_{16}^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.4(3)<br>122.8(2) |
| $C_2 - C_7 - C_0$          | 109.0(3)<br>108.2(3) | N1 C15 C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.0(5)<br>117.7(2) |
| C9-C8-C12<br>C9-C8-C7      | 109.1 (3)            | NI-CI3-CI0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.7 (5)            |
| C11-C1-C2-C3               | -86.5 (4)            | C6-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -87.4 (4)            |
| C13-C1-C2-C3               | 48.3 (5)             | C2-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44.1 (4)             |
| C10-C1-C2-C3               | 159.1 (4)            | C6-C7-C8-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 158.8 (4)            |
| C11-C1-C2-C7               | 44.9 (4)             | C2-C7-C8-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -69.7(4)             |
| C13-C1-C2-C7               | 179.7 (3)            | C8-C9-C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178.1 (3)            |
| C10-C1-C2-C7               | -69.5(3)             | C8-C9-C10-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3 (4)              |
| C1-C2-C3-C4                | -171.5 (3)           | C13-C1-C10-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179.5 (3)            |
| C5-C6-C7-C8                | -170.5(4)            | C13-C1-C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.4 (3)              |
| C3-C2-C7-C6                | -65.8(4)             | C1-C11-C12-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4 (4)              |
| C1-C2-C7-C6                | 155.5 (3)            | C9-C8-C12-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -54.9(4)             |
| C3-C2-C7-C8                | 156.7 (3)            | C7-C8-C12-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.5 (4)             |
| C1-C2-C7-C8                | 18.0(4)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

### Table 2

Geometry (Å,°) of C–H··· $\pi$  contacts in (I).

| $C-H\cdots Cg^{a}$                                | C-H  | $H{\cdots}Cg$ | ${\rm H_{perp}}^b$ | $\gamma^{c}$ | $C-H\cdots Cg$ | $C \cdots Cg$ |
|---------------------------------------------------|------|---------------|--------------------|--------------|----------------|---------------|
| $C6-H6A\cdots Cg1^{i}$<br>$C6-H6B\cdots Cg1^{ii}$ | 0.97 | 2.80          | 2.69               | 16<br>15     | 149<br>135     | 3.68          |
| $C4-H4B\cdots Cg2^{iii}$                          | 0.97 | 3.34          | 3.28               | 11           | 120            | 3.92          |

Notes: (a) Cg1 and Cg2 are the centroids of the rings defined by C16-C21 and C1/C10/ C13–C14/N1, respectively; (b)  $H_{perp}$  is the perpendicular distance of the H atom from the mean plane of the ring; (c)  $\gamma$  is the angle at hydrogen between  $H_{perp}$  and  $H \cdots Cg$ . Symmetry codes (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x,  $\frac{3}{2} - y$ ,  $\frac{1}{2} + z$ ; (iii) 1 + x, y, z.



Figure 1

A view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii.

The incompleteness (84.9% complete for  $\theta_{\rm full} = 25^{\circ}$ ) of the mid-1980s data set upon which this refinement is based is due to the suppression, during data reduction and contrary to current practice, of reflections with intensities measured as negative. As a consequence, the omissions are scattered throughout the data set although they are more prevalent at high  $\theta$ . In the final stages of refinement, H atoms were introduced in calculated positions with C–H set at 0.93, 0.97 and 0.98 Å for aryl/alkene, methylene and tertiary H atoms, respectively, and refined with a riding model, with  $U_{\rm iso}({\rm H}) =$  $1.2U_{\rm eq}({\rm C})$  in all cases.

Data collection: *Nicolet P3 Software* (Nicolet, 1980); cell refinement: *Nicolet P3 Software*; data reduction: *RDNIC* (Howie, 1980); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

NM thanks Dublin City University for a studentship.

#### References

Coyle, J. D. (1984). *Synthetic Organic Photochemistry*, edited by W. M. Horspool, pp. 259–284. New York: Plenum Press.



#### Figure 2

A layer of molecules of (I). Displacement ellipsoids are drawn at the 20% probability level and H atoms involved in C–H. $\pi$  contacts (dashed lines) are shown as small circles of arbitrary radii. [Symmetry codes (i) 1 – *x*, 1 – *y*, 1 – *z*; (ii) 1 + *x*,  $\frac{3}{2}$  – *y*,  $\frac{1}{2}$  + *z*; (iv) 2 – *x*, *y* –  $\frac{1}{2}$ ,  $\frac{3}{2}$  – *z*; (v) *x* – 1,  $\frac{3}{2}$  – *y*, *z* –  $\frac{1}{2}$ ; (vi) –*x*, *y* –  $\frac{1}{2}$ ,  $\frac{1}{2}$  – *z*.]

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Howie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.
- Kanaoka, Y. (1978). Acc. Chem. Res. 11, 407-413.
- Kubo, Y., Taniguchi, E. & Araki, T. (1989). Heterocycles, 29, 1857-1860.
- Nicolet. (1980). Nicolet P3/R3 Data Collection Operator's Manual. Nicolet XRD Corporation, Cupertino, California, USA.
- Oelgemöller, M. & Griesbeck, A. G. (2002). J. Photochem. Photobiol. C, 3, 109–127.
- Schwack, W. (1987). Tetrahedron Lett. 28, 1869-1871.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Suau, R., Garcia-Segura, R. & Sosa-Olaya, F. (1989). Tetrahedron Lett. 30, 3225–3228.

# supporting information

*Acta Cryst.* (2005). E**61**, o547–o549 [https://doi.org/10.1107/S1600536805002758]

(1*RS*,2*SR*,7*RS*,8*RS*)-*N*-Benzoyltricyclo[6.2.2.0<sup>2,7</sup>]dodeca-9,11-diene-1,10dicarboximide

# Nigel McSweeney, Albert C. Pratt, Conor Long and R. Alan Howie

(1RS,2SR,7RS,8RS)-N-Benzoyltricyclo[6.2.2.0<sup>2,7</sup>]dodeca-9,11-diene-1,10- dicarboximide

# Crystal data

C<sub>21</sub>H<sub>19</sub>NO<sub>3</sub>  $M_r = 333.37$ Monoclinic, P2<sub>1</sub>/c Hall symbol: -P 2ybc a = 8.111 (3) Å b = 12.999 (7) Å c = 16.256 (5) Å  $\beta = 100.76$  (3)° V = 1683.8 (12) Å<sup>3</sup> Z = 4

# Data collection

Nicolet P3 four-circle diffractometer Radiation source: normal-focus sealed tube Graphite monochromator  $\theta$ -2 $\theta$  scans 3882 measured reflections 3882 independent reflections 1880 reflections with  $I > 2\sigma(I)$ 

# Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.088$  $wR(F^2) = 0.192$ S = 1.033882 reflections 226 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 704  $D_x = 1.315 \text{ Mg m}^{-3}$ Melting point = 411–413 K Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14 reflections  $\theta = 11.0-13.0^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 298 KBlock, colourless  $0.60 \times 0.40 \times 0.26 \text{ mm}$ 

 $R_{int} = 0.000$   $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 2.0^{\circ}$   $h = 0 \rightarrow 11$   $k = 0 \rightarrow 18$   $l = -22 \rightarrow 22$ 2 standard reflections every 50 reflections intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0735P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.32$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.23$  e Å<sup>-3</sup>

## Special details

**Experimental**. Scan rates, dependent on prescan intensity (Ip), were in the range 58.6 (Ip>2500) to 5.33 (Ip<150) degrees 2-theta per min. Scan widths, dependent on 2-theta, were in the range 2.4 to 2.7 degrees 2-theta. Stationary crystal, stationary counter background counts were taken on either side of the peak each for 25% of the total (peak plus background) count time.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (\* indicates atom used to define plane) - 7.2306 (0.0071) x + 5.8226 (0.0186) y + 1.6136 (0.0260) z = 1.6557 (0.0174)

\* -0.0185 (0.0020) C1 \* 0.0197 (0.0020) C10 \* 0.0112 (0.0020) C13 \* -0.0131 (0.0019) C14 \* 0.0007 (0.0020) N1 0.0528 (0.0052) O1 - 0.0531 (0.0047) O2 - 1.1343 (0.0056) O3 - 0.1943 (0.0055) C15

Rms deviation of fitted atoms = 0.0143

- 0.6803 (0.0143) x + 10.2618 (0.0152) y - 9.4566 (0.0246) z = 2.4682 (0.0136)

Angle to previous plane (with approximate e.s.d.) = 61.97 (0.15)

\* -0.0002 (0.0026) C16 \* -0.0003 (0.0028) C17 \* 0.0002 (0.0031) C18 \* 0.0005 (0.0032) C19 \* -0.0010 (0.0032) C20 \* 0.0009 (0.0029) C21 - 0.0135 (0.0068) N1 0.1449 (0.0070) O3 0.0297 (0.0059) C15

Rms deviation of fitted atoms = 0.0006

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| <b>F 1</b>        | 1                | 1              | • 1 /        |            | 1. 1          | ,            | 1821 |
|-------------------|------------------|----------------|--------------|------------|---------------|--------------|------|
| Fractional atomic | coordinates and  | i isotropic oi | • eauivalent | isofronic  | displacement  | narameters   | (A-) |
| 1                 | eoor annares ann | noon opro or   | 9900000000   | noon op re | mopraceentern | pen enterers | ()   |

|     | x          | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|------------|--------------|--------------|-----------------------------|
| N1  | 0.3644 (3) | 0.6274 (2)   | 0.39508 (16) | 0.0392 (7)                  |
| 01  | 0.4530 (3) | 0.7657 (2)   | 0.32558 (15) | 0.0603 (8)                  |
| O2  | 0.3050 (3) | 0.51618 (19) | 0.49727 (15) | 0.0500 (7)                  |
| O3  | 0.4287 (3) | 0.5436 (2)   | 0.28269 (16) | 0.0619 (8)                  |
| C1  | 0.4954 (4) | 0.7640 (3)   | 0.47789 (19) | 0.0373 (8)                  |
| C2  | 0.6906 (4) | 0.7617 (3)   | 0.5097 (2)   | 0.0414 (8)                  |
| H2  | 0.7172     | 0.6884       | 0.5171       | 0.050*                      |
| C3  | 0.8167 (5) | 0.8014 (4)   | 0.4613 (2)   | 0.0713 (13)                 |
| H3A | 0.8087     | 0.8757       | 0.4567       | 0.086*                      |
| H3B | 0.7957     | 0.7725       | 0.4053       | 0.086*                      |
| C4  | 0.9903 (5) | 0.7707 (4)   | 0.5070 (3)   | 0.0714 (13)                 |
| H4A | 1.0038     | 0.6972       | 0.5005       | 0.086*                      |
| H4B | 1.0731     | 0.8049       | 0.4807       | 0.086*                      |
| C5  | 1.0262 (5) | 0.7962 (4)   | 0.5997 (3)   | 0.0722 (13)                 |
| H5A | 1.0452     | 0.8696       | 0.6063       | 0.087*                      |
| H5B | 1.1286     | 0.7615       | 0.6257       | 0.087*                      |
| C6  | 0.8865 (5) | 0.7655 (4)   | 0.6452 (2)   | 0.0690 (13)                 |
| H6A | 0.8822     | 0.6912       | 0.6498       | 0.083*                      |
| H6B | 0.9075     | 0.7943       | 0.7012       | 0.083*                      |
| C7  | 0.7247 (4) | 0.8045 (3)   | 0.5978 (2)   | 0.0476 (9)                  |
| H7  | 0.7447     | 0.8779       | 0.5904       | 0.057*                      |
| C8  | 0.5568 (4) | 0.8011 (3)   | 0.6343 (2)   | 0.0489 (10)                 |
| H8  | 0.5752     | 0.8166       | 0.6944       | 0.059*                      |

| C9  | 0.4719 (4)  | 0.6989 (3) | 0.6132 (2) | 0.0442 (9)  |
|-----|-------------|------------|------------|-------------|
| Н9  | 0.4473      | 0.6528     | 0.6530     | 0.053*      |
| C10 | 0.4362 (4)  | 0.6823 (3) | 0.5311 (2) | 0.0375 (8)  |
| C11 | 0.4270 (4)  | 0.8654 (3) | 0.4999 (2) | 0.0481 (9)  |
| H11 | 0.3711      | 0.9111     | 0.4602     | 0.058*      |
| C12 | 0.4543 (4)  | 0.8834 (3) | 0.5814 (2) | 0.0523 (10) |
| H12 | 0.4139      | 0.9416     | 0.6044     | 0.063*      |
| C13 | 0.4398 (4)  | 0.7243 (3) | 0.3902 (2) | 0.0423 (8)  |
| C14 | 0.3603 (4)  | 0.5969 (3) | 0.4789 (2) | 0.0387 (8)  |
| C15 | 0.3223 (4)  | 0.5619 (3) | 0.3224 (2) | 0.0428 (9)  |
| C16 | 0.1475 (4)  | 0.5261 (3) | 0.2993 (2) | 0.0418 (8)  |
| C17 | 0.0221 (4)  | 0.5567 (3) | 0.3415 (2) | 0.0548 (11) |
| H17 | 0.0475      | 0.6006     | 0.3873     | 0.066*      |
| C18 | -0.1412 (5) | 0.5220 (4) | 0.3155 (3) | 0.0674 (12) |
| H18 | -0.2250     | 0.5426     | 0.3440     | 0.081*      |
| C19 | -0.1789 (5) | 0.4577 (4) | 0.2485 (3) | 0.0709 (13) |
| H19 | -0.2884     | 0.4346     | 0.2311     | 0.085*      |
| C20 | -0.0557 (6) | 0.4274 (4) | 0.2069 (3) | 0.0730 (13) |
| H20 | -0.0822     | 0.3833     | 0.1612     | 0.088*      |
| C21 | 0.1079 (5)  | 0.4610 (3) | 0.2314 (2) | 0.0594 (11) |
| H21 | 0.1905      | 0.4399     | 0.2024     | 0.071*      |
|     |             |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-----------------|--------------|-------------|--------------|
| N1  | 0.0374 (15) | 0.0425 (17) | 0.0380 (16)     | -0.0070 (14) | 0.0082 (12) | -0.0007 (14) |
| 01  | 0.0765 (19) | 0.0623 (18) | 0.0420 (15)     | -0.0096 (15) | 0.0103 (13) | 0.0145 (14)  |
| O2  | 0.0512 (15) | 0.0449 (15) | 0.0555 (16)     | -0.0120 (13) | 0.0138 (12) | 0.0067 (13)  |
| O3  | 0.0498 (16) | 0.084 (2)   | 0.0578 (17)     | -0.0057 (14) | 0.0247 (13) | -0.0184 (15) |
| C1  | 0.0352 (18) | 0.042 (2)   | 0.0345 (18)     | -0.0005 (16) | 0.0055 (14) | 0.0031 (16)  |
| C2  | 0.0350 (18) | 0.048 (2)   | 0.043 (2)       | -0.0049 (16) | 0.0131 (15) | -0.0030 (17) |
| C3  | 0.055 (3)   | 0.114 (4)   | 0.050 (2)       | -0.020 (3)   | 0.022 (2)   | -0.007 (2)   |
| C4  | 0.043 (2)   | 0.102 (4)   | 0.075 (3)       | -0.012 (2)   | 0.026 (2)   | -0.016 (3)   |
| C5  | 0.038 (2)   | 0.103 (4)   | 0.076 (3)       | -0.004 (2)   | 0.011 (2)   | -0.013 (3)   |
| C6  | 0.054 (3)   | 0.104 (4)   | 0.047 (2)       | 0.002 (3)    | 0.0052 (19) | -0.015 (2)   |
| C7  | 0.0389 (19) | 0.063 (3)   | 0.043 (2)       | -0.0021 (18) | 0.0137 (16) | -0.0008 (19) |
| C8  | 0.048 (2)   | 0.060 (3)   | 0.042 (2)       | -0.0055 (19) | 0.0191 (17) | -0.0104 (19) |
| C9  | 0.042 (2)   | 0.053 (2)   | 0.041 (2)       | -0.0024 (17) | 0.0180 (16) | 0.0046 (18)  |
| C10 | 0.0336 (17) | 0.041 (2)   | 0.0398 (19)     | -0.0024 (16) | 0.0119 (14) | 0.0032 (17)  |
| C11 | 0.039 (2)   | 0.043 (2)   | 0.062 (3)       | 0.0039 (17)  | 0.0101 (17) | 0.007 (2)    |
| C12 | 0.045 (2)   | 0.050 (2)   | 0.068 (3)       | 0.0012 (19)  | 0.0238 (19) | -0.011 (2)   |
| C13 | 0.0377 (19) | 0.049 (2)   | 0.041 (2)       | 0.0005 (17)  | 0.0084 (15) | 0.0081 (18)  |
| C14 | 0.0303 (17) | 0.040 (2)   | 0.048 (2)       | -0.0008 (16) | 0.0134 (15) | 0.0039 (17)  |
| C15 | 0.044 (2)   | 0.047 (2)   | 0.039 (2)       | -0.0005 (17) | 0.0102 (17) | 0.0019 (17)  |
| C16 | 0.0396 (19) | 0.051 (2)   | 0.0351 (19)     | -0.0026 (17) | 0.0070 (15) | 0.0000 (17)  |
| C17 | 0.043 (2)   | 0.072 (3)   | 0.049 (2)       | -0.003 (2)   | 0.0085 (17) | -0.014 (2)   |
| C18 | 0.039 (2)   | 0.100 (4)   | 0.065 (3)       | -0.011 (2)   | 0.0138 (19) | -0.008 (3)   |
| C19 | 0.050 (2)   | 0.099 (4)   | 0.060 (3)       | -0.030 (3)   | 0.001 (2)   | -0.001 (3)   |
|     |             |             |                 |              |             |              |

# supporting information

| C20 | 0.075 (3) | 0.088 (4) | 0.051 (3) | -0.023 (3) | -0.001 (2)  | -0.016 (2) |
|-----|-----------|-----------|-----------|------------|-------------|------------|
| C21 | 0.064 (3) | 0.068 (3) | 0.047 (2) | -0.015 (2) | 0.0128 (19) | -0.009 (2) |

Geometric parameters (Å, °)

| N1—C13     | 1.408 (4) | C6—H6B      | 0.9700    |
|------------|-----------|-------------|-----------|
| N1-C14     | 1.425 (4) | C7—C8       | 1.584 (5) |
| N1-C15     | 1.444 (4) | C7—H7       | 0.9800    |
| O1—C13     | 1.203 (4) | C8—C9       | 1.506 (5) |
| O2—C14     | 1.200 (4) | C8—C12      | 1.519 (5) |
| O3—C15     | 1.194 (4) | C8—H8       | 0.9800    |
| C1-C11     | 1.500 (5) | C9—C10      | 1.330 (4) |
| C1—C13     | 1.504 (5) | С9—Н9       | 0.9300    |
| C1—C10     | 1.504 (4) | C10—C14     | 1.462 (5) |
| C1—C2      | 1.571 (4) | C11—C12     | 1.323 (5) |
| C2—C3      | 1.493 (5) | C11—H11     | 0.9300    |
| C2—C7      | 1.514 (5) | C12—H12     | 0.9300    |
| C2—H2      | 0.9800    | C15—C16     | 1.473 (5) |
| C3—C4      | 1.518 (6) | C16—C21     | 1.380 (5) |
| С3—НЗА     | 0.9700    | C16—C17     | 1.387 (5) |
| С3—Н3В     | 0.9700    | C17—C18     | 1.389 (5) |
| C4—C5      | 1.516 (6) | C17—H17     | 0.9300    |
| C4—H4A     | 0.9700    | C18—C19     | 1.361 (6) |
| C4—H4B     | 0.9700    | C18—H18     | 0.9300    |
| C5—C6      | 1.518 (6) | C19—C20     | 1.366 (6) |
| C5—H5A     | 0.9700    | C19—H19     | 0.9300    |
| C5—H5B     | 0.9700    | C20—C21     | 1.383 (5) |
| С6—С7      | 1.481 (5) | C20—H20     | 0.9300    |
| С6—Н6А     | 0.9700    | C21—H21     | 0.9300    |
|            |           |             |           |
| C13—N1—C14 | 113.0 (3) | C9—C8—C12   | 108.3 (3) |
| C13—N1—C15 | 121.3 (3) | C9—C8—C7    | 109.1 (3) |
| C14—N1—C15 | 125.0 (3) | C12—C8—C7   | 100.8 (3) |
| C11—C1—C13 | 118.0 (3) | С9—С8—Н8    | 112.7     |
| C11-C1-C10 | 108.2 (3) | С12—С8—Н8   | 112.7     |
| C13—C1—C10 | 103.4 (3) | C7—C8—H8    | 112.7     |
| C11—C1—C2  | 109.4 (3) | C10—C9—C8   | 112.1 (3) |
| C13—C1—C2  | 114.3 (3) | С10—С9—Н9   | 123.9     |
| C10—C1—C2  | 102.0 (3) | С8—С9—Н9    | 123.9     |
| C3—C2—C7   | 110.4 (3) | C9—C10—C14  | 134.1 (3) |
| C3—C2—C1   | 124.6 (3) | C9—C10—C1   | 115.4 (3) |
| C7—C2—C1   | 107.4 (3) | C14—C10—C1  | 110.3 (3) |
| С3—С2—Н2   | 104.1     | C12—C11—C1  | 113.2 (3) |
| С7—С2—Н2   | 104.1     | C12—C11—H11 | 123.4     |
| C1—C2—H2   | 104.1     | C1—C11—H11  | 123.4     |
| C2—C3—C4   | 108.4 (3) | C11—C12—C8  | 114.5 (3) |
| С2—С3—НЗА  | 110.0     | C11—C12—H12 | 122.8     |
| С4—С3—Н3А  | 110.0     | C8—C12—H12  | 122.8     |

| С2—С3—Н3В                       | 110.0                | O1—C13—N1                         | 124.0 (3)  |
|---------------------------------|----------------------|-----------------------------------|------------|
| С4—С3—Н3В                       | 110.0                | O1—C13—C1                         | 127.9 (3)  |
| НЗА—СЗ—НЗВ                      | 108.4                | N1—C13—C1                         | 108.1 (3)  |
| C5—C4—C3                        | 114.7 (3)            | O2—C14—N1                         | 123.9 (3)  |
| C5—C4—H4A                       | 108.6                | O2—C14—C10                        | 130.9 (3)  |
| C3—C4—H4A                       | 108.6                | N1—C14—C10                        | 105.1 (3)  |
| C5—C4—H4B                       | 108.6                | O3—C15—N1                         | 118.4 (3)  |
| C3—C4—H4B                       | 108.6                | O3—C15—C16                        | 123.8 (3)  |
| H4A—C4—H4B                      | 107.6                | N1—C15—C16                        | 117.7(3)   |
| C4-C5-C6                        | 113 8 (3)            | $C_{21}$ $C_{16}$ $C_{17}$        | 1193(3)    |
| C4—C5—H5A                       | 108.8                | $C_{21} - C_{16} - C_{15}$        | 117.9(3)   |
| C6-C5-H5A                       | 108.8                | $C_{17}$ $C_{16}$ $C_{15}$        | 122.8(3)   |
| CA = C5 = H5R                   | 108.8                | $C_{16}$ $C_{17}$ $C_{18}$        | 122.0(3)   |
| C4 C5 U5P                       | 108.8                | $C_{10} = C_{17} = C_{18}$        | 120.1 (4)  |
|                                 | 107.7                | $C_{10} = C_{17} = H_{17}$        | 119.9      |
| $H_{JA} = C_{J} = H_{JB}$       | 107.7                | $C_{10} = C_{17} = H_{17}$        | 119.9      |
| $C_{-}C_{0}$                    | 109.1 (4)            | C19 - C18 - C17                   | 120.2 (4)  |
|                                 | 109.9                | C19—C18—H18                       | 119.9      |
| С5—С6—Н6А                       | 109.9                | C17—C18—H18                       | 119.9      |
| С/—С6—Н6В                       | 109.9                | C18—C19—C20                       | 119.8 (4)  |
| С5—С6—Н6В                       | 109.9                | С18—С19—Н19                       | 120.1      |
| H6A—C6—H6B                      | 108.3                | С20—С19—Н19                       | 120.1      |
| C6—C7—C2                        | 110.8 (3)            | C19—C20—C21                       | 121.1 (4)  |
| C6—C7—C8                        | 122.4 (3)            | С19—С20—Н20                       | 119.4      |
| C2—C7—C8                        | 109.0 (3)            | C21—C20—H20                       | 119.4      |
| С6—С7—Н7                        | 104.3                | C16—C21—C20                       | 119.5 (4)  |
| С2—С7—Н7                        | 104.3                | C16—C21—H21                       | 120.3      |
| С8—С7—Н7                        | 104.3                | C20—C21—H21                       | 120.3      |
|                                 |                      |                                   |            |
| C11—C1—C2—C3                    | -86.5 (4)            | C7—C8—C12—C11                     | 59.5 (4)   |
| C13—C1—C2—C3                    | 48.3 (5)             | C14—N1—C13—O1                     | -178.3 (3) |
| C10—C1—C2—C3                    | 159.1 (4)            | C15—N1—C13—O1                     | 10.9 (5)   |
| C11—C1—C2—C7                    | 44.9 (4)             | C14—N1—C13—C1                     | 0.9 (4)    |
| C13—C1—C2—C7                    | 179.7 (3)            | C15—N1—C13—C1                     | -169.8(3)  |
| C10—C1—C2—C7                    | -69.5 (3)            | C11—C1—C13—O1                     | 57.3 (5)   |
| C7—C2—C3—C4                     | 58.4 (5)             | C10-C1-C13-O1                     | 176.6 (4)  |
| C1-C2-C3-C4                     | -171.5(3)            | C2-C1-C13-O1                      | -73.4(5)   |
| $C_{2}-C_{3}-C_{4}-C_{5}$       | -49.9(5)             | C11—C1—C13—N1                     | -121.9(3)  |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$ | 467(6)               | C10-C1-C13-N1                     | -2.6(3)    |
| C4-C5-C6-C7                     | -495(5)              | $C_{2}$ $C_{1}$ $C_{13}$ $N_{1}$  | 1074(3)    |
| $C_{5}$ $C_{6}$ $C_{7}$ $C_{2}$ | 58 7 (5)             | $C_{13}$ N1 $-C_{14}$ O2          | -1783(3)   |
| $C_{5} = C_{6} = C_{7} = C_{8}$ | -1705(4)             | C15 - N1 - C14 - O2               | -79(5)     |
| $C_{3} = C_{2} = C_{7} = C_{6}$ | -65.8(4)             | C13 = N1 = C14 = C10              | 13(3)      |
| $C_{1} = C_{2} = C_{1} = C_{0}$ | 155 5 (2)            | C15 = N1 = C14 = C10              | 1.5(3)     |
| $C_1 - C_2 - C_7 - C_0$         | 155.5(3)<br>156.7(3) | $C_{13} = 11 = C_{14} = C_{10}$   | 1 5 (6)    |
| $C_{1} = C_{2} = C_{1} = C_{2}$ | 130.7(3)             | $C_{1} = C_{10} = C_{14} = O_{2}$ | 1.3(0)     |
| $C_1 - C_2 - C_1 - C_3$         | 10.0(4)              | $C_1 - C_1 0 - C_1 4 - O_2$       | 1/0.0(3)   |
| $C_{0} = C_{1} = C_{0} = C_{0}$ | -0/.4(4)             | $C_{1} = C_{10} = C_{14} = N_{1}$ | -1/8.0(4)  |
| $U_2 - U_1 - U_3 - U_9$         | 44.1 (4)             | CI = CI0 = CI4 = NI               | -2.9 (3)   |
| C6-C7-C8-C12                    | 158.8 (4)            | C13—N1—C15—O3                     | 51.8(5)    |

| C2C7C8C12      | -69.7 (4)  | C14—N1—C15—O3   | -117.8 (4) |
|----------------|------------|-----------------|------------|
| C12—C8—C9—C10  | 50.0 (4)   | C13—N1—C15—C16  | -125.1 (3) |
| C7—C8—C9—C10   | -58.8 (4)  | C14—N1—C15—C16  | 65.3 (4)   |
| C8—C9—C10—C14  | 178.1 (3)  | O3-C15-C16-C21  | 5.2 (6)    |
| C8—C9—C10—C1   | 3.3 (4)    | N1-C15-C16-C21  | -178.1 (3) |
| C11—C1—C10—C9  | -54.7 (4)  | O3—C15—C16—C17  | -173.4 (4) |
| C13—C1—C10—C9  | 179.5 (3)  | N1-C15-C16-C17  | 3.3 (5)    |
| C2-C1-C10-C9   | 60.6 (4)   | C21—C16—C17—C18 | 0.0 (6)    |
| C11-C1-C10-C14 | 129.2 (3)  | C15—C16—C17—C18 | 178.6 (4)  |
| C13—C1—C10—C14 | 3.4 (3)    | C16—C17—C18—C19 | 0.0 (7)    |
| C2-C1-C10-C14  | -115.4 (3) | C17—C18—C19—C20 | 0.1 (7)    |
| C13—C1—C11—C12 | 166.6 (3)  | C18—C19—C20—C21 | -0.2 (7)   |
| C10-C1-C11-C12 | 49.9 (4)   | C17—C16—C21—C20 | -0.1 (6)   |
| C2-C1-C11-C12  | -60.5 (4)  | C15-C16-C21-C20 | -178.8 (4) |
| C1-C11-C12-C8  | 3.4 (4)    | C19—C20—C21—C16 | 0.2 (7)    |
| C9—C8—C12—C11  | -54.9 (4)  |                 |            |
|                |            |                 |            |