organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Hydro­xy­methyl)-3,5-di­methyl­pyrazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro
*Correspondence e-mail: ivana.radosavljevic@durham.ac.uk

(Received 31 January 2005; accepted 4 February 2005; online 12 February 2005)

The structure of the title compound, C6H10N2O, has been determined from single crystals obtained by recrystallization from acetone. Intermolecular O—H⋯N hydrogen bonding gives rise to R22(10) dimers.

Comment

1-(Hydro­xy­methyl)-3,5-di­methyl­pyrazole (HL), (I[link]), was first synthesized by a reaction of 3,5-di­methyl­pyrazole with paraform­aldehyde (Driessen, 1982[Driessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 441-443.]). HL can act as a chelating ligand, as shown by the examples of four isomorphous cubane-type cluster coordination compounds of the formula [MXL(EtOH)4] (M = CoII, NiII, X = Cl, Br; Paap et al., 1985[Paap, F., Bouwman, E., Driessen, W. L., de Graaf, R. A. G. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 737-741.]), where the deprotonated species acts as a bidentate ligand, coordinating the metals through its pyridine N atom and the methoxy O atom. With a metal with different coordination preferences, such as Pd, HL acts as a monodentate ligand through the pyrazole N atom, forming a square-planar complex (Boixassa et al., 2002[Boixassa, A., Pons, J., Virgili, A., Solans, X., Font-Bardia, M. & Ros, J. (2002). Inorg. Chim. Acta, 340, 49-55.]).[link]

[Scheme 1]

The molecular structure of (I[link]) is shown in Fig. 1[link]. The substituted pyrazole ring is essentially planar, the largest displacement being 0.01 Å for C4. The O1—C1—N1—N2 torsion angle is 90.19 (9)°. The structure is stabilized by intermolecular O—H⋯N hydrogen bonding between adjacent mol­ecules [H⋯N = 1.89 (2) Å, O⋯N = 2.760 (1) Å and O—H⋯N = 171.0 (2)°]. These interactions give rise to dimers with an R22(10) hydrogen-bonding motif (Etter et al., 1990[Etter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) (Fig. 2).

[Figure 1]
Figure 1
The molecular structure of (I[link]) and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The hydrogen bonding (dashed lines) in (I[link]).
[Figure 3]
Figure 3
Two views of the packing scheme in (I[link]).

Experimental

Needle-shaped clear single crystals of (I[link]) were obtained by recrystallization of the commercial product (Aldrich) from acetone.

Crystal data
  • C6H10N2O

  • Mr = 126.16

  • Monoclinic, P21/n

  • a = 7.2877 (2) Å

  • b = 11.9265 (3) Å

  • c = 8.1586 (2) Å

  • β = 107.396 (1)°

  • V = 676.68 (3) Å3

  • Z = 4

  • Dx = 1.238 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6570 reflections

  • θ = 3.1–34.3°

  • μ = 0.09 mm−1

  • T = 120 K

  • Needle, white

  • 0.80 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.92, Tmax = 0.98

  • 13356 measured reflections

  • 2742 independent reflections

  • 2113 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 34.5°

  • h = −11 → 11

  • k = −18 → 19

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.00

  • 2113 reflections

  • 122 parameters

  • All H-atom parameters refined

  • w = [1 − (Fo − Fc)/6σ(Fo)2]2/[3.44T0(x) + 4.59T1(x) + 1.31T2(x)] where T are the Chebychev polynomial terms and x = Fc/Fmax (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.4007 (10)
N1—C1 1.4530 (11)
N1—C2 1.3568 (11)
N2—N1 1.3627 (10)
N2—C4 1.3362 (10)
C2—C5 1.4918 (13)
C3—C2 1.3814 (13)
C3—C4 1.4073 (12)
C6—C4 1.4934 (12)
N1—N2—C4 105.40 (7)
N2—N1—C1 119.71 (7)
N2—N1—C2 111.90 (7)
C1—N1—C2 128.31 (7)
N1—C1—O1 112.93 (7)
C2—C3—C4 105.78 (7)
C3—C2—N1 106.36 (7)
C3—C2—C5 131.14 (8)
N1—C2—C5 122.49 (8)
C6—C4—C3 128.72 (8)
C6—C4—N2 120.72 (8)
C3—C4—N2 110.55 (7)

H atoms were found in a difference Fourier map and refined using an isotropic approximation. Refined C—H bond lengths are in the range 0.95 (2)–1.04 (2) Å and the O—H bond length is 0.88 (2) Å.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Shape Software (2000). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

1-(hydroxymethyl)-3,5-dimethylpyrazole top
Crystal data top
C6H10N2OF(000) = 272
Mr = 126.16Dx = 1.238 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6570 reflections
a = 7.2877 (2) Åθ = 3.1–34.3°
b = 11.9265 (3) ŵ = 0.09 mm1
c = 8.1586 (2) ÅT = 120 K
β = 107.396 (1)°Prism, white
V = 676.68 (3) Å30.80 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 34.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.92, Tmax = 0.98k = 1819
13356 measured reflectionsl = 1212
2742 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.100 Chebychev polynomial, (Watkin, 1994; Prince, 1982): w = 1.0/[A0T0(x) + A1T1(x) ··· + An-1]Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = Fc/Fmax; method = Robust Weighting (Prince, 1982); W = w[1-(δF/6σF)2]2; Ai are 3.44 4.59 1.31
S = 1.00(Δ/σ)max < 0.001
2113 reflectionsΔρmax = 0.40 e Å3
122 parametersΔρmin = 0.31 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02535 (9)0.04616 (6)0.23811 (8)0.0220
N10.26298 (10)0.04284 (6)0.40283 (9)0.0190
N20.25525 (10)0.08755 (6)0.55433 (9)0.0189
C10.16421 (12)0.06190 (7)0.34201 (12)0.0226
C20.36052 (11)0.10985 (8)0.32329 (10)0.0211
C30.42099 (11)0.20151 (7)0.42920 (12)0.0218
C40.35202 (11)0.18413 (7)0.57094 (11)0.0194
C50.38717 (15)0.08069 (11)0.15405 (13)0.0317
C60.37831 (13)0.25601 (8)0.72617 (13)0.0280
H10.101 (2)0.0516 (14)0.304 (2)0.040 (4)*
H20.237 (2)0.0995 (12)0.2760 (19)0.028 (3)*
H30.166 (2)0.1056 (13)0.446 (2)0.033 (4)*
H40.362 (3)0.3355 (17)0.692 (2)0.053 (5)*
H50.508 (3)0.2465 (15)0.808 (3)0.055 (5)*
H60.277 (3)0.2393 (16)0.783 (2)0.051 (5)*
H70.265 (3)0.0639 (15)0.071 (2)0.047 (5)*
H80.496 (2)0.2622 (12)0.408 (2)0.031 (3)*
H90.480 (3)0.0133 (16)0.167 (2)0.048 (4)*
H100.455 (3)0.1415 (17)0.119 (3)0.059 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0180 (2)0.0279 (3)0.0187 (3)0.0024 (2)0.0034 (2)0.0020 (2)
N10.0176 (3)0.0203 (3)0.0181 (3)0.0014 (2)0.0041 (2)0.0009 (2)
N20.0180 (3)0.0193 (3)0.0190 (3)0.0019 (2)0.0049 (2)0.0013 (2)
C10.0191 (3)0.0201 (3)0.0260 (4)0.0000 (2)0.0028 (3)0.0044 (3)
C20.0164 (3)0.0278 (4)0.0183 (3)0.0008 (3)0.0038 (2)0.0043 (3)
C30.0174 (3)0.0225 (3)0.0242 (3)0.0022 (2)0.0042 (3)0.0053 (3)
C40.0158 (3)0.0188 (3)0.0222 (3)0.0013 (2)0.0033 (2)0.0003 (3)
C50.0273 (4)0.0490 (6)0.0191 (4)0.0018 (4)0.0075 (3)0.0018 (4)
C60.0247 (4)0.0270 (4)0.0313 (4)0.0050 (3)0.0068 (3)0.0095 (3)
Geometric parameters (Å, º) top
O1—C11.4007 (10)C6—H61.000 (18)
N1—C11.4530 (11)C6—H40.98 (2)
N1—C21.3568 (11)O1—H10.878 (17)
N2—N11.3627 (10)C1—H20.972 (14)
N2—C41.3362 (10)C1—H30.995 (16)
C2—C51.4918 (13)C3—H80.952 (15)
C3—C21.3814 (13)C5—H70.963 (18)
C3—C41.4073 (12)C5—H100.97 (2)
C6—C41.4934 (12)C5—H91.038 (19)
C6—H50.988 (19)
C4—C6—H5111.2 (11)H2—C1—H3111.2 (12)
C4—C6—H6110.7 (11)C2—C3—C4105.78 (7)
H5—C6—H6110.5 (15)C2—C3—H8125.3 (9)
C4—C6—H4109.8 (11)C4—C3—H8128.9 (9)
H5—C6—H4108.1 (14)C3—C2—N1106.36 (7)
H6—C6—H4106.2 (15)C3—C2—C5131.14 (8)
C1—O1—H1107.9 (11)N1—C2—C5122.49 (8)
N1—N2—C4105.40 (7)C6—C4—C3128.72 (8)
N2—N1—C1119.71 (7)C6—C4—N2120.72 (8)
N2—N1—C2111.90 (7)C3—C4—N2110.55 (7)
C1—N1—C2128.31 (7)C2—C5—H7110.6 (11)
N1—C1—O1112.93 (7)C2—C5—H10108.5 (12)
N1—C1—H2106.8 (9)H7—C5—H10113.3 (16)
O1—C1—H2109.3 (9)C2—C5—H9110.3 (11)
N1—C1—H3106.2 (9)H7—C5—H9110.4 (15)
O1—C1—H3110.4 (8)H10—C5—H9103.5 (14)
 

Acknowledgements

This work was financed in part by the Ministry of Science and Environmental Protection of the Republic of Serbia (project No. 1318 – Physicochemical, structural and biological investigation of complex compounds). IRE thanks the EPSRC for an Academic Fellowship.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoixassa, A., Pons, J., Virgili, A., Solans, X., Font-Bardia, M. & Ros, J. (2002). Inorg. Chim. Acta, 340, 49–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDriessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 441–443.  CrossRef CAS Google Scholar
First citationEtter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPaap, F., Bouwman, E., Driessen, W. L., de Graaf, R. A. G. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 737–741.  CSD CrossRef Web of Science Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationShape Software (2000). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds