Download citation
Download citation
link to html
In the title compound, C15H15N3OS, the thio­semicarbazone moiety is planar, with a maximum deviation of 0.0369 (11) Å, and has an E configuration. The planar phenyl rings make dihedral angles of 26.56 (9) and 81.20 (5)° with the plane of the thio­semicarbazone moiety. In the mol­ecule, there are two intramolecular interactions of types N—H...O and N—H...N. In the crystal structure, there are two intermolecular interactions of types O—H...S and N—H...S, leading to the formation of dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680500646X/su6174sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680500646X/su6174Isup2.hkl
Contains datablock I

CCDC reference: 270549

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.107
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. CG1 .. 2.83 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 1990).

Benzoin thiosemicarbazone top
Crystal data top
C15H15N3OSF(000) = 600
Mr = 285.36Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15282 reflections
a = 6.0440 (4) Åθ = 1.4–27.2°
b = 14.6516 (9) ŵ = 0.22 mm1
c = 16.8653 (11) ÅT = 296 K
β = 100.266 (5)°Stick, colorless
V = 1469.58 (16) Å30.80 × 0.45 × 0.24 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
3207 independent reflections
Radiation source: sealed X-ray tube2398 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.091
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω scansh = 77
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1818
Tmin = 0.878, Tmax = 0.962l = 2121
16115 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0081P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3207 reflectionsΔρmax = 0.19 e Å3
182 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09858 (7)0.96006 (3)0.38197 (2)0.05904 (15)
O10.71315 (19)0.80612 (8)0.33544 (6)0.0610 (3)
H10.79750.84910.34990.092*
N10.5977 (2)0.81768 (8)0.49710 (7)0.0522 (3)
N20.4387 (2)0.85340 (9)0.43656 (7)0.0556 (3)
H20.43950.84000.38700.067*
N30.2820 (3)0.92228 (11)0.53372 (8)0.0702 (4)
H3A0.37990.89490.56900.084*
H3B0.18430.95780.54890.084*
C10.7463 (2)0.76325 (9)0.47784 (8)0.0475 (3)
C20.2818 (2)0.90975 (10)0.45663 (9)0.0508 (3)
C30.7615 (3)0.73295 (10)0.39240 (8)0.0500 (3)
H30.91560.71220.39220.060*
C40.9115 (2)0.72722 (9)0.54607 (8)0.0477 (3)
C51.0271 (3)0.64655 (11)0.53916 (10)0.0629 (4)
H50.99840.61370.49120.076*
C61.1837 (4)0.61454 (14)0.60257 (11)0.0797 (6)
H61.25980.56030.59730.096*
C71.2274 (4)0.66265 (16)0.67365 (11)0.0826 (6)
H71.33570.64180.71600.099*
C81.1116 (4)0.74118 (15)0.68198 (11)0.0832 (6)
H81.13850.77280.73060.100*
C90.9552 (3)0.77372 (12)0.61881 (9)0.0669 (5)
H90.87800.82740.62500.080*
C100.6037 (3)0.65536 (10)0.36251 (8)0.0516 (3)
C110.4493 (3)0.62048 (13)0.40468 (12)0.0739 (5)
H110.44020.64440.45510.089*
C120.3071 (4)0.55048 (15)0.37383 (15)0.0905 (7)
H120.20260.52820.40330.109*
C130.3185 (4)0.51382 (14)0.30073 (13)0.0823 (6)
H130.22130.46700.27990.099*
C140.4726 (4)0.54590 (13)0.25827 (11)0.0847 (6)
H140.48180.52040.20850.102*
C150.6165 (4)0.61618 (13)0.28831 (9)0.0726 (5)
H150.72210.63730.25880.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0556 (3)0.0590 (2)0.0586 (2)0.01381 (17)0.00040 (16)0.00196 (16)
O10.0647 (7)0.0657 (7)0.0510 (6)0.0001 (5)0.0057 (5)0.0102 (5)
N10.0519 (7)0.0518 (6)0.0491 (6)0.0106 (5)0.0014 (5)0.0036 (5)
N20.0569 (8)0.0589 (7)0.0471 (6)0.0178 (6)0.0015 (5)0.0051 (5)
N30.0696 (9)0.0859 (10)0.0524 (7)0.0338 (8)0.0033 (6)0.0039 (7)
C10.0478 (8)0.0466 (7)0.0465 (7)0.0025 (6)0.0042 (6)0.0021 (5)
C20.0471 (8)0.0473 (7)0.0558 (8)0.0038 (6)0.0030 (6)0.0026 (6)
C30.0473 (8)0.0577 (8)0.0442 (7)0.0087 (6)0.0062 (6)0.0015 (6)
C40.0476 (8)0.0487 (7)0.0459 (7)0.0037 (6)0.0056 (6)0.0013 (5)
C50.0649 (10)0.0650 (9)0.0558 (8)0.0167 (8)0.0023 (7)0.0045 (7)
C60.0844 (13)0.0771 (11)0.0724 (11)0.0347 (10)0.0002 (9)0.0038 (9)
C70.0859 (14)0.0928 (13)0.0599 (10)0.0262 (11)0.0120 (9)0.0063 (9)
C80.1025 (16)0.0843 (13)0.0530 (9)0.0199 (11)0.0126 (9)0.0070 (9)
C90.0813 (12)0.0612 (9)0.0529 (8)0.0160 (8)0.0029 (8)0.0052 (7)
C100.0524 (8)0.0539 (7)0.0463 (7)0.0109 (6)0.0031 (6)0.0042 (6)
C110.0708 (11)0.0777 (11)0.0784 (11)0.0115 (9)0.0270 (9)0.0303 (9)
C120.0768 (14)0.0834 (13)0.1164 (17)0.0184 (10)0.0311 (12)0.0372 (12)
C130.0815 (14)0.0666 (11)0.0885 (14)0.0026 (9)0.0134 (11)0.0213 (10)
C140.1248 (19)0.0701 (11)0.0501 (9)0.0095 (11)0.0095 (10)0.0149 (8)
C150.0980 (14)0.0737 (11)0.0455 (8)0.0076 (10)0.0115 (8)0.0033 (7)
Geometric parameters (Å, º) top
S1—C21.6907 (14)C6—C71.375 (3)
O1—C31.4343 (17)C6—H60.9300
O1—H10.8200C7—C81.367 (3)
N1—C11.2853 (18)C7—H70.9300
N1—N21.3747 (16)C8—C91.377 (2)
N2—C21.3451 (19)C8—H80.9300
N2—H20.8600C9—H90.9300
N3—C21.3127 (19)C10—C111.369 (2)
N3—H3A0.8600C10—C151.391 (2)
N3—H3B0.8600C11—C121.379 (3)
C1—C41.4803 (18)C11—H110.9300
C1—C31.5262 (19)C12—C131.358 (3)
C3—C101.512 (2)C12—H120.9300
C3—H30.9800C13—C141.356 (3)
C4—C91.387 (2)C13—H130.9300
C4—C51.388 (2)C14—C151.384 (3)
C5—C61.378 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C3—O1—H1109.5C5—C6—H6120.0
C1—N1—N2118.42 (12)C8—C7—C6119.91 (16)
C2—N2—N1118.52 (12)C8—C7—H7120.0
C2—N2—H2120.7C6—C7—H7120.0
N1—N2—H2120.7C7—C8—C9120.34 (17)
C2—N3—H3A120.0C7—C8—H8119.8
C2—N3—H3B120.0C9—C8—H8119.8
H3A—N3—H3B120.0C8—C9—C4120.69 (16)
N1—C1—C4115.47 (12)C8—C9—H9119.7
N1—C1—C3125.55 (12)C4—C9—H9119.7
C4—C1—C3118.98 (12)C11—C10—C15117.74 (16)
N3—C2—N2117.31 (13)C11—C10—C3123.74 (13)
N3—C2—S1124.16 (12)C15—C10—C3118.52 (15)
N2—C2—S1118.54 (11)C10—C11—C12121.21 (17)
O1—C3—C10107.32 (11)C10—C11—H11119.4
O1—C3—C1112.07 (11)C12—C11—H11119.4
C10—C3—C1113.15 (12)C13—C12—C11120.5 (2)
O1—C3—H3108.0C13—C12—H12119.7
C10—C3—H3108.0C11—C12—H12119.7
C1—C3—H3108.0C14—C13—C12119.54 (19)
C9—C4—C5118.26 (13)C14—C13—H13120.2
C9—C4—C1120.53 (13)C12—C13—H13120.2
C5—C4—C1121.21 (13)C13—C14—C15120.69 (17)
C6—C5—C4120.71 (15)C13—C14—H14119.7
C6—C5—H5119.6C15—C14—H14119.7
C4—C5—H5119.6C14—C15—C10120.28 (19)
C7—C6—C5120.07 (17)C14—C15—H15119.9
C7—C6—H6120.0C10—C15—H15119.9
C1—N1—N2—C2179.44 (14)C6—C7—C8—C91.7 (4)
N2—N1—C1—C4179.82 (12)C7—C8—C9—C40.4 (3)
N2—N1—C1—C30.8 (2)C5—C4—C9—C80.9 (3)
N1—N2—C2—N34.4 (2)C1—C4—C9—C8178.91 (17)
N1—N2—C2—S1175.39 (10)O1—C3—C10—C11119.04 (17)
N1—C1—C3—O139.6 (2)C1—C3—C10—C115.1 (2)
C4—C1—C3—O1141.43 (13)O1—C3—C10—C1561.61 (17)
N1—C1—C3—C1081.90 (18)C1—C3—C10—C15174.25 (13)
C4—C1—C3—C1097.06 (15)C15—C10—C11—C121.7 (3)
N1—C1—C4—C923.1 (2)C3—C10—C11—C12178.98 (18)
C3—C1—C4—C9157.87 (15)C10—C11—C12—C130.6 (3)
N1—C1—C4—C5157.08 (16)C11—C12—C13—C140.6 (3)
C3—C1—C4—C522.0 (2)C12—C13—C14—C150.7 (3)
C9—C4—C5—C61.1 (3)C13—C14—C15—C100.4 (3)
C1—C4—C5—C6178.76 (17)C11—C10—C15—C141.6 (3)
C4—C5—C6—C70.1 (3)C3—C10—C15—C14179.03 (15)
C5—C6—C7—C81.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.062.6738 (18)128
N3—H3A···N10.862.252.6057 (18)105
O1—H1···S1i0.822.433.2370 (12)169
N3—H3B···S1ii0.862.543.3840 (14)168
C6—H6···Cg1i0.932.833.665 (2)150
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds