organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­methyl-phenyl­amino-bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide) tetra­butyl­ammonium salt

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Highfield, Southampton, England SO17 1BJ
*Correspondence e-mail: light@soton.ac.uk

(Received 22 March 2005; accepted 6 April 2005; online 9 April 2005)

The crystal structure of the tetra­butyl­ammonium salt of doubly deprotonated 4-amino­methyl(phenyl­amino)bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide), 2C16H36N+·C32H22Cl4N6O42−, has been elucidated. The anion lies on an inversion centre and adopts a twisted S shape.

Comment

4-Amino­methyl(phenyl­amino)bis-(3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carbox­amide) crystallizes as the tetra­butyl­ammonium salt, (I[link]), from an aceto­nitrile solution of the compound in the presence of excess tetra­butyl­ammonium fluoride. The anion adopts a twisted S shape around a centre of inversion. The pyrrole and terminal benzene ring pairs are coplanar and the angle between the central and terminal benzene ring is 73.01 (5)°.[link]

[Scheme 1]
[Figure 1]
Figure 1
Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and non-acidic H atoms omitted for clarity.

Experimental

p-Xyl­enedi­amine (68 mg, 0.5 mmol, 1 equiv.) was added to a solution of 3,4-di­chloro-5-phenyl­carbamoyl-1H-pyrrole-2-carboxyl­ic acid (300 mg, 1 mmol, 2 equiv.) in DMF (30 ml) under a nitro­gen atmos­phere. Triethy­amine (104 mg, 1 mmol, 2 equiv.), benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (572 mg, 1.1 mmol, 2.2 equiv.) and 5 mg (0.04 mmol, 0.04 equiv.) of N-hydroxybenzotriazole were added and the reaction was stirred for 72 h. The solvent was then removed and water (50 ml) was added. The product was extracted with dichloromethane (DCM, 3 × 50 ml). The organic phase was collected and the solvent was removed. The product was washed with diethyl ether (75 ml) and a small quantity of 10% MeOH in DCM (v/v). The product was obtained as a white solid (132 mg, 0.19 mmol, 38%).

M.p. 590 K (decomp.). 1H NMR 300 MHz in DMSO-d6 δ (p.p.m.): 4.50 (d, J = 5.4, 4H, CH2), 7.00–7.70 (m, 14H, ArH), 8.50 (t, 2H, J = 5.4, central–CONH), 10.04 (s, 2H, outer–CONH), 12.79 (s, 2H, NH-pyrrole). 13C NMR 75 MHz in DMSO-d6 δ (p.p.m.): 42.3, 112.0, 113.6, 119.8, 122.9, 123.1, 123.9, 127.4, 128.7, 137.6, 138.3, 156.5, 158.1. TOF LD+ mass spectrum: m/z (%): 472 (100) [C23H22Cl2N4O3]+. Elemental analysis: Calc. for C32H24Cl4N6O4.H2O: C 53.65, H 3.66, N 11.73%; found: C 53.28, H 3.73, N 12.03%.

Crystals of the title compound were obtained by slow evaporation of an aceto­nitrile solution in the presence of excess tetra­butyl­ammonium fluoride.

Crystal data
  • 2C16H36N+·C32H22Cl4N6O42−

  • Mr = 1181.27

  • Triclinic, [P\overline 1]

  • a = 9.524 (2) Å

  • b = 10.363 (3) Å

  • c = 17.056 (4) Å

  • α = 78.293 (11)°

  • β = 88.733 (14)°

  • γ = 80.136 (14)°

  • V = 1623.9 (7) Å3

  • Z = 1

  • Dx = 1.208 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 58835 reflections

  • θ = 2.9–27.5°

  • μ = 0.23 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.20 × 0.10 × 0.07 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.732, Tmax = 0.984

  • 16494 measured reflections

  • 5757 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.111

  • θmax = 26.1°

  • h = −11 → 11

  • k = −12 → 12

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.101

  • wR(F2) = 0.192

  • S = 1.04

  • 5757 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0424P)2 + 2.4189P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.019

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

H atoms were identified in a difference map and then placed in calculated positions (N—H 0.88, aromatic C—H 0.95, methylene C—H 0.99, methyl C—H 0.98) and refined using a riding model [Uiso(H) = 1.2 or 1.5 times Ueq(C,N)].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski and Minor, 1997), COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski and Minor, 1997), COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski and Minor, 1997), COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin, et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1998).

(I) top
Crystal data top
C32H22Cl4N6O4·2(C16H36N)Z = 1
Mr = 1181.27F(000) = 634
Triclinic, P1Dx = 1.208 Mg m3
a = 9.524 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.363 (3) ÅCell parameters from 58835 reflections
c = 17.056 (4) Åθ = 2.9–27.5°
α = 78.293 (11)°µ = 0.23 mm1
β = 88.733 (14)°T = 120 K
γ = 80.136 (14)°Block, colourless
V = 1623.9 (7) Å30.20 × 0.10 × 0.07 mm
Data collection top
Bruker Nonius Kappa CCD Area detector
diffractometer
5757 independent reflections
Radiation source: Rotating Anode, Bruker Nonius FR5912777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 9.091 pixels mm-1θmax = 26.1°, θmin = 3.1°
φ and ω scans to fill the asymmetric unith = 1111
Absorption correction: multi-scan
SORTAV (Blessing, 1997)
k = 1212
Tmin = 0.732, Tmax = 0.984l = 2020
16494 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.101Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.4189P]
where P = (Fo2 + 2Fc2)/3
5757 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The higher angle reflections were very diffuse and weak and data above 26.09 θ theta were omitted from the refinement. As a result the _diffrn_reflns_theta_full is low (26.09) and the data are only 89% complete to this value

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03523 (16)0.79277 (16)0.44484 (8)0.0620 (5)
Cl20.75939 (16)1.05446 (16)0.41527 (8)0.0592 (5)
O11.1698 (4)0.6453 (4)0.3030 (2)0.0566 (11)
O20.5971 (4)1.1745 (4)0.2402 (2)0.0538 (11)
N11.0803 (5)0.7269 (5)0.1767 (3)0.0487 (13)
H911.01460.78810.14880.058*
N20.8929 (5)0.9176 (5)0.2225 (3)0.0428 (12)
N30.7274 (5)1.1256 (5)0.1331 (3)0.0509 (13)
H930.81431.09720.11820.061*
C11.3027 (7)0.5813 (6)0.1559 (3)0.0487 (16)
H11.34380.59510.20310.058*
C21.3809 (6)0.5006 (6)0.1103 (4)0.0499 (16)
H21.47590.45990.12600.060*
C31.3233 (7)0.4776 (6)0.0415 (4)0.0517 (16)
H31.37720.42040.01070.062*
C41.1854 (7)0.5396 (6)0.0183 (3)0.0500 (16)
H41.14490.52660.02930.060*
C51.1074 (6)0.6196 (6)0.0642 (4)0.0510 (16)
H51.01240.66010.04830.061*
C61.1644 (6)0.6427 (6)0.1337 (4)0.0464 (15)
C71.0864 (6)0.7269 (6)0.2570 (4)0.0448 (15)
C80.9809 (6)0.8328 (6)0.2795 (3)0.0392 (14)
C90.9494 (6)0.8649 (6)0.3541 (3)0.0464 (15)
C100.8383 (6)0.9723 (6)0.3426 (3)0.0472 (16)
C110.8045 (6)1.0043 (6)0.2588 (3)0.0433 (15)
C120.6989 (7)1.1095 (6)0.2119 (4)0.0445 (15)
C130.6200 (6)1.1883 (6)0.0721 (3)0.0532 (16)
H13A0.66221.25010.02980.064*
H13B0.54141.24210.09640.064*
C140.5600 (6)1.0907 (6)0.0344 (3)0.0447 (15)
C150.5075 (6)1.1251 (6)0.0432 (3)0.0480 (15)
H150.51371.21140.07380.058*
C160.5528 (6)0.9608 (6)0.0775 (3)0.0457 (15)
H160.59030.93280.13050.055*
N40.1867 (5)0.2167 (4)0.3108 (3)0.0469 (12)
C170.2262 (6)0.0766 (6)0.3622 (3)0.0512 (16)
H17A0.17520.07380.41350.061*
H17B0.19200.01230.33460.061*
C180.3849 (6)0.0302 (6)0.3803 (4)0.0601 (18)
H18A0.41150.06570.42660.072*
H18B0.44010.06650.33360.072*
C190.4236 (7)0.1235 (6)0.3994 (4)0.0638 (18)
H19A0.51500.14980.42970.077*
H19B0.34940.16050.43410.077*
C200.4372 (7)0.1837 (7)0.3263 (4)0.083 (2)
H20A0.34610.16090.29700.125*
H20B0.46300.28110.34220.125*
H20C0.51130.14840.29190.125*
C210.2295 (6)0.2154 (5)0.2238 (3)0.0476 (15)
H21A0.21340.30870.19320.057*
H21B0.33290.18080.22290.057*
C220.1520 (6)0.1335 (6)0.1811 (3)0.0567 (17)
H22A0.17870.03760.20600.068*
H22B0.04790.15950.18690.068*
C230.1877 (6)0.1538 (6)0.0943 (3)0.0530 (16)
H23A0.29230.13170.08910.064*
H23B0.15810.24950.06960.064*
C240.1181 (6)0.0709 (6)0.0483 (3)0.0577 (17)
H24A0.14690.02420.07200.087*
H24B0.14810.08800.00770.087*
H24C0.01430.09520.05070.087*
C250.0263 (5)0.2587 (6)0.3169 (3)0.0482 (16)
H25A0.02130.19000.30100.058*
H25B0.00300.25990.37370.058*
C260.0351 (6)0.3940 (6)0.2662 (3)0.0577 (17)
H26A0.00940.46400.28280.069*
H26B0.01220.39430.20930.069*
C270.1949 (6)0.4260 (7)0.2750 (4)0.0664 (19)
H27A0.23860.35530.25850.080*
H27B0.21700.42430.33210.080*
C280.2616 (7)0.5599 (7)0.2263 (4)0.082 (2)
H28A0.22530.63120.24540.123*
H28B0.36530.57180.23200.123*
H28C0.23740.56380.16980.123*
C290.2666 (6)0.3149 (5)0.3386 (3)0.0478 (16)
H29A0.37020.28180.33600.057*
H29B0.24520.40190.30060.057*
C300.2328 (6)0.3380 (6)0.4224 (3)0.0522 (16)
H30A0.23650.25080.45980.063*
H30B0.13500.38890.42300.063*
C310.3377 (7)0.4151 (6)0.4504 (3)0.0605 (18)
H31A0.34150.49800.41010.073*
H31B0.43410.36000.45540.073*
C320.2938 (7)0.4511 (7)0.5310 (4)0.079 (2)
H32A0.20180.51150.52500.118*
H32B0.36610.49530.54960.118*
H32C0.28540.36940.57020.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0602 (10)0.0784 (12)0.0446 (9)0.0219 (9)0.0037 (8)0.0032 (8)
Cl20.0646 (11)0.0723 (12)0.0455 (9)0.0220 (9)0.0084 (8)0.0148 (8)
O10.056 (3)0.051 (3)0.055 (3)0.001 (2)0.010 (2)0.002 (2)
O20.047 (3)0.059 (3)0.055 (3)0.010 (2)0.010 (2)0.010 (2)
N10.047 (3)0.047 (3)0.044 (3)0.006 (3)0.005 (2)0.003 (3)
N20.041 (3)0.042 (3)0.044 (3)0.012 (3)0.004 (2)0.002 (3)
N30.045 (3)0.063 (4)0.040 (3)0.013 (3)0.003 (2)0.002 (3)
C10.051 (4)0.045 (4)0.046 (4)0.011 (4)0.003 (3)0.002 (3)
C20.042 (4)0.039 (4)0.062 (4)0.011 (3)0.005 (3)0.008 (3)
C30.062 (5)0.035 (4)0.057 (4)0.016 (4)0.011 (3)0.002 (3)
C40.051 (4)0.049 (4)0.044 (4)0.008 (4)0.003 (3)0.005 (3)
C50.041 (4)0.047 (4)0.059 (4)0.000 (3)0.007 (3)0.003 (3)
C60.046 (4)0.040 (4)0.049 (4)0.005 (3)0.003 (3)0.000 (3)
C70.041 (4)0.045 (4)0.047 (4)0.012 (3)0.001 (3)0.003 (3)
C80.036 (3)0.037 (4)0.045 (4)0.010 (3)0.001 (3)0.005 (3)
C90.049 (4)0.043 (4)0.048 (4)0.016 (3)0.001 (3)0.004 (3)
C100.060 (4)0.045 (4)0.046 (4)0.030 (4)0.006 (3)0.012 (3)
C110.043 (4)0.044 (4)0.046 (4)0.018 (3)0.003 (3)0.008 (3)
C120.046 (4)0.044 (4)0.047 (4)0.019 (4)0.005 (3)0.009 (3)
C130.057 (4)0.048 (4)0.050 (4)0.008 (3)0.001 (3)0.000 (3)
C140.043 (4)0.043 (4)0.047 (4)0.006 (3)0.010 (3)0.007 (3)
C150.059 (4)0.038 (4)0.041 (4)0.010 (3)0.007 (3)0.005 (3)
C160.043 (4)0.048 (4)0.042 (3)0.005 (3)0.004 (3)0.001 (3)
N40.049 (3)0.047 (3)0.044 (3)0.023 (3)0.001 (2)0.004 (2)
C170.061 (4)0.052 (4)0.043 (3)0.028 (3)0.004 (3)0.001 (3)
C180.056 (4)0.059 (5)0.060 (4)0.015 (4)0.002 (3)0.005 (3)
C190.066 (4)0.065 (5)0.056 (4)0.017 (4)0.007 (3)0.004 (4)
C200.092 (6)0.075 (5)0.083 (5)0.016 (5)0.003 (4)0.012 (4)
C210.049 (4)0.046 (4)0.047 (4)0.015 (3)0.001 (3)0.001 (3)
C220.061 (4)0.066 (4)0.046 (4)0.030 (4)0.001 (3)0.002 (3)
C230.048 (4)0.059 (4)0.054 (4)0.017 (3)0.003 (3)0.011 (3)
C240.062 (4)0.058 (4)0.050 (4)0.013 (4)0.008 (3)0.002 (3)
C250.042 (4)0.063 (4)0.045 (4)0.025 (3)0.004 (3)0.010 (3)
C260.046 (4)0.070 (5)0.055 (4)0.016 (4)0.000 (3)0.002 (3)
C270.053 (4)0.070 (5)0.080 (5)0.012 (4)0.004 (4)0.023 (4)
C280.049 (4)0.098 (6)0.096 (6)0.001 (4)0.011 (4)0.022 (5)
C290.047 (4)0.051 (4)0.046 (4)0.023 (3)0.007 (3)0.003 (3)
C300.058 (4)0.053 (4)0.046 (4)0.023 (3)0.007 (3)0.001 (3)
C310.071 (4)0.055 (4)0.055 (4)0.022 (4)0.016 (3)0.003 (3)
C320.082 (5)0.079 (5)0.078 (5)0.017 (4)0.015 (4)0.019 (4)
Geometric parameters (Å, º) top
Cl1—C91.732 (6)C2—H20.9500
Cl2—C101.730 (6)C3—H30.9500
O1—C71.220 (6)C4—H40.9500
O2—C121.231 (6)C5—H50.9500
N1—C71.373 (7)C13—H13A0.9901
N1—C61.391 (7)C13—H13B0.9900
N2—C111.358 (7)C15—H150.9499
N2—C81.362 (6)C16—H160.9499
N3—C121.348 (7)C17—H17A0.9899
N3—C131.447 (6)C17—H17B0.9900
C1—C21.373 (8)C18—H18A0.9901
C1—C61.386 (7)C18—H18B0.9900
C2—C31.385 (8)C19—H19A0.9900
C3—C41.387 (7)C19—H19B0.9900
C4—C51.371 (7)C20—H20A0.9800
C5—C61.394 (8)C20—H20B0.9799
C7—C81.462 (8)C20—H20C0.9800
C8—C91.393 (7)C21—H21A0.9899
C9—C101.384 (7)C21—H21B0.9900
C10—C111.431 (7)C22—H22A0.9900
C11—C121.465 (8)C22—H22B0.9900
C13—C141.498 (7)C23—H23A0.9900
C14—C151.381 (7)C23—H23B0.9899
C14—C161.408 (7)C24—H24A0.9800
C15—C16i1.366 (7)C24—H24B0.9799
C16—C15i1.366 (7)C24—H24C0.9801
N4—C251.522 (7)C25—H25A0.9900
N4—C291.523 (6)C25—H25B0.9900
N4—C171.526 (6)C26—H26A0.9900
N4—C211.533 (6)C26—H26B0.9901
C17—C181.524 (7)C27—H27A0.9900
C18—C191.540 (8)C27—H27B0.9900
C19—C201.497 (8)C28—H28A0.9800
C21—C221.512 (7)C28—H28B0.9800
C22—C231.492 (7)C28—H28C0.9800
C23—C241.511 (7)C29—H29A0.9900
C25—C261.519 (7)C29—H29B0.9900
C26—C271.512 (7)C30—H30A0.9900
C27—C281.508 (8)C30—H30B0.9900
C29—C301.516 (7)C31—H31A0.9899
C30—C311.521 (7)C31—H31B0.9899
C31—C321.528 (8)C32—H32A0.9800
N1—H910.8800C32—H32B0.9800
N3—H930.8801C32—H32C0.9799
C1—H10.9500
C7—N1—C6128.4 (5)C17—C18—H18A109.3
C11—N2—C8108.2 (5)C19—C18—H18A109.3
C12—N3—C13122.2 (5)C17—C18—H18B109.3
C2—C1—C6120.6 (6)C19—C18—H18B109.3
C1—C2—C3121.0 (6)H18A—C18—H18B108.0
C2—C3—C4119.0 (6)C20—C19—H19A108.9
C5—C4—C3119.9 (6)C18—C19—H19A108.9
C4—C5—C6121.5 (6)C20—C19—H19B108.9
C1—C6—N1123.4 (6)C18—C19—H19B108.9
C1—C6—C5118.1 (6)H19A—C19—H19B107.7
N1—C6—C5118.5 (5)C19—C20—H20A109.5
O1—C7—N1122.6 (6)C19—C20—H20B109.5
O1—C7—C8125.4 (6)H20A—C20—H20B109.5
N1—C7—C8112.0 (5)C19—C20—H20C109.5
N2—C8—C9109.8 (5)H20A—C20—H20C109.5
N2—C8—C7119.9 (5)H20B—C20—H20C109.5
C9—C8—C7130.3 (6)C22—C21—H21A108.3
C10—C9—C8107.1 (5)N4—C21—H21A108.4
C10—C9—Cl1124.9 (5)C22—C21—H21B108.3
C8—C9—Cl1128.0 (5)N4—C21—H21B108.3
C9—C10—C11106.6 (5)H21A—C21—H21B107.4
C9—C10—Cl2126.4 (5)C23—C22—H22A109.4
C11—C10—Cl2126.9 (5)C21—C22—H22A109.4
N2—C11—C10108.3 (5)C23—C22—H22B109.4
N2—C11—C12120.5 (5)C21—C22—H22B109.4
C10—C11—C12131.1 (6)H22A—C22—H22B108.0
O2—C12—N3124.2 (6)C22—C23—H23A108.7
O2—C12—C11124.8 (5)C24—C23—H23A108.7
N3—C12—C11111.0 (5)C22—C23—H23B108.7
N3—C13—C14113.6 (5)C24—C23—H23B108.7
C15—C14—C16117.5 (5)H23A—C23—H23B107.6
C15—C14—C13121.4 (5)C23—C24—H24A109.5
C16—C14—C13121.0 (5)C23—C24—H24B109.5
C16i—C15—C14122.2 (5)H24A—C24—H24B109.5
C15i—C16—C14120.3 (5)C23—C24—H24C109.5
C25—N4—C29111.0 (4)H24A—C24—H24C109.5
C25—N4—C17107.3 (4)H24B—C24—H24C109.5
C29—N4—C17111.2 (4)C26—C25—H25A108.4
C25—N4—C21110.8 (4)N4—C25—H25A108.4
C29—N4—C21106.6 (4)C26—C25—H25B108.6
C17—N4—C21110.0 (4)N4—C25—H25B108.5
C18—C17—N4115.1 (4)H25A—C25—H25B107.5
C17—C18—C19111.6 (5)C27—C26—H26A109.3
C20—C19—C18113.3 (5)C25—C26—H26A109.2
C22—C21—N4115.8 (4)C27—C26—H26B109.4
C23—C22—C21111.2 (4)C25—C26—H26B109.4
C22—C23—C24114.1 (4)H26A—C26—H26B108.0
C26—C25—N4115.2 (4)C28—C27—H27A108.9
C27—C26—C25111.4 (5)C26—C27—H27A108.8
C28—C27—C26113.7 (5)C28—C27—H27B108.8
C30—C29—N4115.4 (4)C26—C27—H27B108.9
C29—C30—C31111.1 (4)H27A—C27—H27B107.7
C30—C31—C32110.9 (5)C27—C28—H28A109.5
C7—N1—H91115.7C27—C28—H28B109.4
C6—N1—H91115.8H28A—C28—H28B109.5
C12—N3—H93118.9C27—C28—H28C109.4
C13—N3—H93118.8H28A—C28—H28C109.5
C2—C1—H1119.7H28B—C28—H28C109.5
C6—C1—H1119.7C30—C29—H29A108.4
C1—C2—H2119.5N4—C29—H29A108.4
C3—C2—H2119.5C30—C29—H29B108.5
C2—C3—H3120.6N4—C29—H29B108.4
C5—C4—H4120.0H29A—C29—H29B107.5
C3—C4—H4120.1C29—C30—H30A109.5
C4—C5—H5119.2C31—C30—H30A109.5
C6—C5—H5119.3C29—C30—H30B109.4
N3—C13—H13A108.9C31—C30—H30B109.3
C14—C13—H13A108.8H30A—C30—H30B108.0
N3—C13—H13B108.8C30—C31—H31A109.6
C14—C13—H13B108.9C32—C31—H31A109.4
H13A—C13—H13B107.7C30—C31—H31B109.4
C16i—C15—H15118.9C32—C31—H31B109.5
C14—C15—H15118.9H31A—C31—H31B108.1
C15i—C16—H16119.9C31—C32—H32A109.5
C14—C16—H16119.9C31—C32—H32B109.5
C18—C17—H17A108.5H32A—C32—H32B109.5
N4—C17—H17A108.5C31—C32—H32C109.4
C18—C17—H17B108.4H32A—C32—H32C109.5
N4—C17—H17B108.5H32B—C32—H32C109.5
H17A—C17—H17B107.5
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors thank the EPSRC for funding the crystallographic facilities. PAG thanks the Royal Society for a University Research Fellowship and Universities UK for an ORS studentship to KN.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds