organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Amino-N,N-di­benzyl-1-de­oxy-α-D-tagato­pyran­ose methanol solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 15 March 2005; accepted 19 April 2005; online 27 April 2005)

The title tagatos­amine, C20H25NO5.CH4O, formed in the Amadori rearrangement of D-galactose with di­benzyl­amine, is shown to crystallize as the α-anomer, in contrast to the β-anomer formed in the Amadori reaction of D-glucose with di­benzyl­amine.

Comment

The Amadori rearrangement, an old and well known reaction (Amadori, 1925[Amadori, M. (1925). Atti Accad. Nazl. Lincei, 2, 337-345.]; Hodge, 1955[Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.]), constitutes the first step in the Maillard reaction (Maillard, 1912[Maillard, L. C. (1912). Compt. Rend. 154, 66-68.]), the classic browning reaction of food chemistry and one of the most complex reactions known (Martins & Van Boekel, 2005[Martins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257-269.]; Kwak & Lim, 2004[Kwak, E. J., & Lim, S. I. (2004). Amino Acids, 27, 85-90.]). Products of the Maillard reaction are responsible for much of the flavour and colour generated during baking and roasting (Mottram et al., 2002[Mottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature (London), 419, 448-449.]). Despite its long standing, however, both the full synthetic potential of the Amadori rearrangement and its role in pathology have yet to be fully understood. The rearrangement is the initial step in the non-enzymatic conjugation of free amines in peptides with reducing carbohydrates to form glycation products in vivo; such advanced glycation end-products (AGE) constitute a complex and heterogeneous group of compounds which accumulate in plasma and tissues in diabetes and renal failure (Lapolla et al., 2005[Lapolla, A., Traldi, P., & Fedele, D. (2005). Clin. Biochem. 38, 103-115.]; Smit & Lutgers, 2004[Smit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767-2784.]). Non-enzymatic glycation has also been implicated in processes of ageing, atherosclerosis and in neurodegenerative amyl­oid pathologies, including Alzheim­er's disease (Horvat & Jakas, 2004[Horvat, S., & Jakas, A. (2004). J. Pept. Sci. 10, 119-137.]; Kikuchi et al., 2003[Kikuchi, S., Shinpo, K., Takeuchi, M., Yamagishi, S., Makita, Z., Sasaki, N. & Tashiro, K. (2003). Brain Res. Rev. 41, 306-323.]).[link]

[Scheme 1]

D-Galactose (1[link]) on treatment with di­benzyl­amine in acetic acid, underwent the Amadori rearrangement to give tagatos­amine (2[link]) (Grünnagel & Haas, 1969[Grünnagel, R. & Haas, H. J. (1969). Justus Liebigs Ann. Chem. 721, 234-235.]); although the solution NMR of (2[link]) was complex, the formation of crystals allowed the secure identification of the α-anomer (3[link]). Crystallization of the α-anomer of tagatos­amine is in direct contrast to the crystallization of the β-anomer of fructos­amine (4[link]), the Amadori product formed from D-glucose and di­benzyl­amine (Hou et al., 2001[Hou, Y., Wu, X., Xie, W., Braunschweiger, P. G. & Wang, P. G. (2001). Tetrahedron Lett. 42, 825-829.]).

The mol­ecules form independent hydrogen-bonded chains parallel to the b axis, incorporating the solvent in the extensive hydrogen-bonding network (Fig. 2[link]).

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing, viewed down the b axis.
[Figure 3]
Figure 3
View of a section of one hydrogen-bonded (dashed lines) chain, showing how the solvent and main mol­ecule interact to form the chain.

Experimental

Crystals of the title compound were first obtained by evaporation of a solution in a methanol–water mixture. They were then recrystallized from hot methanol to afford colourless crystals. The full synthetic procedure will be published separately (Hotchkiss et al., 2005[Hotchkiss, D., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.]).

Crystal data
  • C20H25NO5·CH4O

  • Mr = 391.46

  • Monoclinic, P21

  • a = 10.3116 (3) Å

  • b = 5.9084 (2) Å

  • c = 17.2641 (6) Å

  • β = 94.2891 (13)°

  • V = 1048.87 (6) Å3

  • Z = 2

  • Dx = 1.239 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2207 reflections

  • θ = 1–27°

  • μ = 0.09 mm−1

  • T = 190 K

  • Block, colourless

  • 0.18 × 0.18 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: none

  • 4394 measured reflections

  • 2601 independent reflections

  • 2044 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 27.5°

  • h = −13 → 13

  • k = −7 → 7

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 0.90

  • 2588 reflections

  • 253 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.24P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O27—H1⋯O8i 0.84 1.89 2.700 (3) 161
O7—H4⋯O9ii 0.78 2.00 2.740 (2) 157
O8—H12⋯O7iii 0.82 1.95 2.756 (2) 167
O9—H253⋯O27 0.96 1.77 2.692 (2) 159
Symmetry codes: (i) x,1+y,z; (ii) x,y-1,z; (iii) [-x,{\script{1\over 2}}+y,1-z].

All of the H atoms were observed in a difference electron-density map. The hydroxyl H atoms were placed as found and the others were positioned geometrically (C—H = 1.0 Å). All were refined with slack restraints and with Uiso(H) = 1.2Ueq(parent atom), and then refined as riding atoms. In the absence of significant scattering effects, Friedel pairs were merged. The final structure shows voids of 50 Å3 to be present. These regions were investigated with difference electron-density maps, but no electron density was found within them. Four reflections were removed manually as outliers, whilst some low-angle reflections were omitted from the refinement because they appeared to be obscured by the beam-stop.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

1-Amino-1-deoxy-N,N-dibenzyl-α-D-tagatopyranose top
Crystal data top
C20H25NO5·CH4OF(000) = 420
Mr = 391.46Dx = 1.239 Mg m3
Monoclinic, P21Melting point: 125 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.3116 (3) ÅCell parameters from 2207 reflections
b = 5.9084 (2) Åθ = 1–27°
c = 17.2641 (6) ŵ = 0.09 mm1
β = 94.2891 (13)°T = 190 K
V = 1048.87 (6) Å3Block, colourless
Z = 20.18 × 0.18 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω scansh = 1313
4394 measured reflectionsk = 77
2601 independent reflectionsl = 2222
2044 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(F2) + (0.04P)2 + 0.24P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.90(Δ/σ)max = 0.000125
2588 reflectionsΔρmax = 0.26 e Å3
253 parametersΔρmin = 0.28 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O270.28501 (18)0.6347 (3)0.55400 (10)0.0431
C280.4200 (3)0.6523 (6)0.56632 (18)0.0602
H160.45830.72260.52010.0700*
H260.45280.49390.57300.0706*
H280.44200.74360.61520.0705*
H10.25390.76570.55020.0850*
C10.1937 (2)0.2791 (4)0.30262 (13)0.0269
C20.2224 (2)0.2670 (4)0.39074 (13)0.0279
C30.1704 (2)0.0479 (4)0.42317 (13)0.0286
C40.0283 (2)0.0148 (4)0.39717 (13)0.0306
C50.0063 (2)0.0461 (4)0.30951 (13)0.0322
O60.05706 (15)0.2580 (3)0.28426 (9)0.0306
O70.01900 (16)0.2045 (3)0.41718 (10)0.0371
O80.19461 (17)0.0441 (3)0.50611 (9)0.0353
O90.16411 (17)0.4586 (3)0.42410 (9)0.0335
C100.2363 (2)0.5049 (4)0.26918 (13)0.0315
N110.26608 (19)0.4749 (4)0.18718 (11)0.0304
C120.1482 (2)0.5060 (5)0.13437 (13)0.0358
C130.1674 (2)0.4348 (4)0.05219 (13)0.0344
C140.1193 (3)0.5681 (5)0.00951 (14)0.0423
C150.1306 (3)0.4988 (6)0.08563 (16)0.0554
C160.1902 (3)0.2987 (7)0.10078 (17)0.0579
C170.2386 (3)0.1632 (6)0.04026 (17)0.0555
C180.2263 (3)0.2303 (5)0.03591 (16)0.0481
C190.3696 (2)0.6315 (4)0.16635 (13)0.0340
C200.4987 (2)0.5815 (4)0.20930 (13)0.0324
C210.5556 (3)0.7338 (5)0.26329 (14)0.0370
C220.6763 (3)0.6872 (5)0.30235 (16)0.0412
C230.7400 (3)0.4891 (5)0.28754 (15)0.0430
C240.6836 (3)0.3355 (5)0.23441 (16)0.0443
C250.5643 (3)0.3813 (5)0.19553 (15)0.0387
O260.26232 (17)0.1016 (3)0.27034 (10)0.0340
H210.31770.27080.40240.0323*
H310.22020.07850.40090.0312*
H410.02060.13450.42270.0347*
H510.05070.08040.28350.0355*
H520.08750.04470.29590.0366*
H1010.31660.55100.29970.0357*
H1020.16810.62170.27430.0359*
H1210.07750.41430.15410.0399*
H1220.12080.66700.13460.0398*
H1410.07750.71450.00100.0496*
H1510.09690.59540.12840.0663*
H1610.19980.25030.15440.0681*
H1710.28070.01970.05130.0650*
H1810.26030.13430.07930.0562*
H1910.34440.78890.17500.0391*
H1920.37980.60990.11040.0385*
H2110.51160.87640.27340.0441*
H2210.71460.79600.34180.0480*
H2310.82460.45580.31560.0497*
H2410.72850.19240.22490.0531*
H2510.52400.27300.15850.0450*
H2520.27770.15730.21760.0601*
H40.03150.29560.40580.0456*
H120.14120.13130.52240.0747*
H2530.21840.48800.47060.0579*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O270.0463 (11)0.0351 (10)0.0464 (10)0.0013 (9)0.0067 (8)0.0026 (9)
C280.055 (2)0.064 (2)0.0628 (19)0.0040 (19)0.0081 (15)0.0019 (18)
C10.0289 (12)0.0242 (11)0.0280 (11)0.0047 (10)0.0035 (9)0.0019 (10)
C20.0266 (12)0.0256 (12)0.0316 (12)0.0034 (10)0.0021 (9)0.0021 (10)
C30.0340 (13)0.0281 (12)0.0238 (11)0.0063 (11)0.0036 (10)0.0007 (10)
C40.0316 (13)0.0259 (12)0.0348 (12)0.0042 (11)0.0060 (10)0.0031 (10)
C50.0311 (13)0.0302 (13)0.0349 (13)0.0007 (11)0.0002 (10)0.0017 (11)
O60.0292 (9)0.0296 (9)0.0327 (8)0.0024 (8)0.0009 (7)0.0044 (8)
O70.0349 (9)0.0303 (9)0.0471 (10)0.0021 (8)0.0097 (8)0.0050 (8)
O80.0430 (10)0.0353 (9)0.0273 (8)0.0085 (8)0.0018 (7)0.0005 (7)
O90.0432 (10)0.0280 (9)0.0290 (8)0.0064 (8)0.0004 (7)0.0053 (8)
C100.0371 (14)0.0291 (13)0.0289 (12)0.0027 (11)0.0060 (10)0.0003 (10)
N110.0334 (11)0.0310 (10)0.0270 (9)0.0008 (9)0.0034 (8)0.0018 (9)
C120.0314 (13)0.0415 (14)0.0342 (13)0.0049 (12)0.0014 (10)0.0002 (12)
C130.0338 (13)0.0372 (14)0.0322 (13)0.0030 (12)0.0032 (10)0.0011 (12)
C140.0449 (16)0.0445 (16)0.0373 (14)0.0019 (13)0.0029 (12)0.0041 (13)
C150.068 (2)0.063 (2)0.0352 (15)0.0013 (19)0.0042 (13)0.0077 (16)
C160.071 (2)0.068 (2)0.0349 (15)0.007 (2)0.0066 (14)0.0077 (16)
C170.072 (2)0.0473 (18)0.0485 (17)0.0027 (17)0.0113 (15)0.0105 (15)
C180.0624 (19)0.0406 (16)0.0414 (14)0.0063 (15)0.0048 (13)0.0004 (14)
C190.0369 (14)0.0317 (13)0.0336 (13)0.0006 (12)0.0037 (10)0.0044 (11)
C200.0357 (14)0.0307 (13)0.0318 (12)0.0001 (11)0.0080 (10)0.0048 (11)
C210.0431 (15)0.0312 (13)0.0371 (13)0.0011 (12)0.0052 (11)0.0002 (12)
C220.0415 (16)0.0416 (15)0.0400 (14)0.0024 (13)0.0011 (12)0.0017 (12)
C230.0382 (15)0.0501 (17)0.0404 (14)0.0024 (14)0.0012 (11)0.0069 (14)
C240.0409 (16)0.0404 (15)0.0516 (16)0.0087 (13)0.0030 (13)0.0009 (13)
C250.0444 (16)0.0363 (14)0.0355 (14)0.0021 (13)0.0038 (12)0.0034 (12)
O260.0405 (10)0.0283 (9)0.0343 (9)0.0079 (8)0.0098 (7)0.0026 (7)
Geometric parameters (Å, º) top
O27—C281.397 (3)C12—C131.507 (3)
O27—H10.839C12—H1210.989
C28—H161.006C12—H1220.992
C28—H260.999C13—C141.386 (4)
C28—H281.012C13—C181.390 (4)
C1—C21.529 (3)C14—C151.390 (4)
C1—O61.427 (3)C14—H1410.990
C1—C101.531 (3)C15—C161.367 (5)
C1—O261.403 (3)C15—H1510.975
C2—C31.524 (3)C16—C171.380 (5)
C2—O91.423 (3)C16—H1610.980
C2—H210.989C17—C181.388 (4)
C3—C41.513 (3)C17—H1710.978
C3—O81.435 (3)C18—H1810.984
C3—H310.999C19—C201.503 (3)
C4—C51.525 (3)C19—H1910.980
C4—O71.435 (3)C19—H1920.987
C4—H410.991C20—C211.393 (4)
C5—O61.437 (3)C20—C251.392 (4)
C5—H511.000C21—C221.398 (4)
C5—H520.979C21—H2110.978
O7—H40.784C22—C231.375 (4)
O8—H120.820C22—H2210.997
O9—H2530.960C23—C241.387 (4)
C10—N111.481 (3)C23—H2310.985
C10—H1010.985C24—C251.383 (4)
C10—H1020.994C24—H2410.983
N11—C121.475 (3)C25—H2510.976
N11—C191.477 (3)O26—H2520.992
C28—O27—H1108.4N11—C12—C13112.8 (2)
O27—C28—H16110.8N11—C12—H121108.2
O27—C28—H26105.8C13—C12—H121108.9
H16—C28—H26109.2N11—C12—H122109.8
O27—C28—H28108.9C13—C12—H122109.2
H16—C28—H28111.3H121—C12—H122107.8
H26—C28—H28110.5C12—C13—C14120.0 (2)
C2—C1—O6109.4 (1)C12—C13—C18121.5 (2)
C2—C1—C10112.1 (2)C14—C13—C18118.4 (2)
O6—C1—C10107.4 (2)C13—C14—C15120.6 (3)
C2—C1—O26107.1 (2)C13—C14—H141119.4
O6—C1—O26111.4 (2)C15—C14—H141120.0
C10—C1—O26109.5 (2)C14—C15—C16120.4 (3)
C1—C2—C3111.0 (2)C14—C15—H151119.5
C1—C2—O9108.0 (2)C16—C15—H151120.1
C3—C2—O9110.8 (2)C15—C16—C17120.0 (3)
C1—C2—H21108.4C15—C16—H161120.8
C3—C2—H21108.5C17—C16—H161119.3
O9—C2—H21110.1C16—C17—C18119.9 (3)
C2—C3—C4111.1 (2)C16—C17—H171119.7
C2—C3—O8109.9 (2)C18—C17—H171120.4
C4—C3—O8112.7 (2)C13—C18—C17120.8 (3)
C2—C3—H31106.8C13—C18—H181118.9
C4—C3—H31107.7C17—C18—H181120.3
O8—C3—H31108.4N11—C19—C20112.7 (2)
C3—C4—C5110.3 (2)N11—C19—H191110.7
C3—C4—O7112.5 (2)C20—C19—H191110.3
C5—C4—O7108.7 (2)N11—C19—H192106.8
C3—C4—H41106.9C20—C19—H192107.6
C5—C4—H41108.2H191—C19—H192108.7
O7—C4—H41110.1C19—C20—C21121.1 (2)
C4—C5—O6112.1 (2)C19—C20—C25120.4 (2)
C4—C5—H51108.4C21—C20—C25118.5 (2)
O6—C5—H51109.0C20—C21—C22120.7 (2)
C4—C5—H52107.9C20—C21—H211119.8
O6—C5—H52108.1C22—C21—H211119.5
H51—C5—H52111.3C21—C22—C23119.9 (3)
C5—O6—C1112.6 (2)C21—C22—H221119.7
C4—O7—H4108.4C23—C22—H221120.4
C3—O8—H12105.2C22—C23—C24119.8 (3)
C2—O9—H253104.2C22—C23—H231119.8
C1—C10—N11110.0 (2)C24—C23—H231120.4
C1—C10—H101107.0C23—C24—C25120.4 (3)
N11—C10—H101108.6C23—C24—H241119.6
C1—C10—H102110.3C25—C24—H241120.0
N11—C10—H102111.5C20—C25—C24120.7 (3)
H101—C10—H102109.4C20—C25—H251118.70
C10—N11—C12110.8 (2)C24—C25—H251120.60
C10—N11—C19111.2 (2)C1—O26—H252103.7
C12—N11—C19110.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H1···O8i0.841.892.700 (3)161
O7—H4···O9ii0.782.002.740 (2)157
O8—H12···O7iii0.821.952.756 (2)167
O9—H253···O270.961.772.692 (2)159
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y+1/2, z+1.
 

Footnotes

Visiting Scientist at: Department of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England

References

First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationAmadori, M. (1925). Atti Accad. Nazl. Lincei, 2, 337–345.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrünnagel, R. & Haas, H. J. (1969). Justus Liebigs Ann. Chem. 721, 234–235.  Google Scholar
First citationHodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHorvat, S., & Jakas, A. (2004). J. Pept. Sci. 10, 119–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHotchkiss, D., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. In preparation.  Google Scholar
First citationHou, Y., Wu, X., Xie, W., Braunschweiger, P. G. & Wang, P. G. (2001). Tetrahedron Lett. 42, 825–829.  Web of Science CSD CrossRef CAS Google Scholar
First citationKikuchi, S., Shinpo, K., Takeuchi, M., Yamagishi, S., Makita, Z., Sasaki, N. & Tashiro, K. (2003). Brain Res. Rev. 41, 306–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwak, E. J., & Lim, S. I. (2004). Amino Acids, 27, 85–90.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLapolla, A., Traldi, P., & Fedele, D. (2005). Clin. Biochem. 38, 103–115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaillard, L. C. (1912). Compt. Rend. 154, 66–68.  CAS Google Scholar
First citationMartins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257–269.  Web of Science CrossRef CAS Google Scholar
First citationMottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature (London), 419, 448–449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSmit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767–2784.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds