Download citation
Download citation
link to html
Tripotassium triiron(III) tetraarsenate, K3Fe3(AsO4)4, has been synthesized at high temperature by solid-state reaction. The structure is built up from corner- and edge-sharing between FeO6 octahedra and AsO4 tetrahedra. The structure can be described as infinite anionic layers parallel to the (010) plane. Alkali metal cations are located in the interlayer space. The relationship between the title compound and K3Fe3(PO4)4·H2O structures is discussed. The title compound is isostructural with K3Cr3(AsO4)4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805008998/dn6202sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805008998/dn6202Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](e-O) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.040
  • wR factor = 0.102
  • Data-to-parameter ratio = 10.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.10 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 1.00 Perc. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 20.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992; Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

tripotassium triiron(III) tetraarsenate top
Crystal data top
K3Fe3(AsO4)4F(000) = 1580
Mr = 840.53Dx = 3.594 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 25 reflections
a = 10.898 (2) Åθ = 11.5–14.2°
b = 21.521 (5) ŵ = 12.11 mm1
c = 6.623 (2) ÅT = 298 K
V = 1553.3 (7) Å3Parallelepiped, green
Z = 40.18 × 0.08 × 0.02 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
714 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.0°, θmin = 3.6°
ω/2θ scansh = 213
Absorption correction: psi scan
(North et al., 1968)
k = 027
Tmin = 0.325, Tmax = 0.785l = 08
1074 measured reflections2 standard reflections every 120 min
893 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0275P)2 + 68.5196P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.62 e Å3
893 reflectionsΔρmin = 1.65 e Å3
88 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00122 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As10.00000.15191 (5)0.07045 (18)0.0132 (3)
As20.25000.04411 (5)0.25000.0086 (3)
Fe10.00000.00000.00000.0177 (5)
Fe20.25000.08971 (7)0.25000.0141 (4)
O10.00000.0870 (3)0.0712 (12)0.0142 (16)
O20.1377 (5)0.0110 (2)0.2059 (7)0.0100 (11)
O30.2142 (5)0.0882 (2)0.4490 (8)0.0127 (11)
O40.1235 (5)0.1506 (2)0.2261 (9)0.0174 (12)
O50.00000.2139 (4)0.0758 (15)0.031 (2)
K10.00000.1642 (3)0.4271 (8)0.0422 (15)0.614 (9)
K20.2269 (15)0.2700 (6)0.122 (2)0.0422 (15)0.193 (4)
K30.087 (3)0.1860 (15)0.420 (5)0.052 (4)0.087 (5)
K40.25000.2715 (10)0.25000.052 (4)0.199 (10)
K50.25000.25000.00000.052 (4)0.091 (8)
K60.00000.047 (5)0.478 (19)0.052 (4)0.036 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0096 (5)0.0118 (5)0.0182 (6)0.0000.0000.0034 (5)
As20.0106 (5)0.0097 (5)0.0056 (5)0.0000.0005 (4)0.000
Fe10.0156 (12)0.0207 (12)0.0168 (12)0.0000.0000.0000 (10)
Fe20.0131 (8)0.0160 (8)0.0131 (8)0.0000.0008 (7)0.000
O10.013 (4)0.014 (4)0.015 (4)0.0000.0000.003 (3)
O20.009 (2)0.009 (2)0.012 (3)0.002 (2)0.002 (2)0.001 (2)
O30.015 (3)0.014 (2)0.009 (2)0.006 (2)0.002 (2)0.004 (2)
O40.012 (3)0.019 (3)0.022 (3)0.001 (2)0.003 (2)0.005 (2)
O50.038 (6)0.020 (5)0.036 (6)0.0000.0000.018 (4)
K10.060 (4)0.041 (3)0.025 (2)0.0000.0000.002 (2)
K20.060 (4)0.041 (3)0.025 (2)0.0000.0000.002 (2)
K30.050 (9)0.045 (9)0.062 (12)0.017 (12)0.011 (9)0.005 (12)
K40.050 (9)0.045 (9)0.062 (12)0.017 (12)0.011 (9)0.005 (12)
K50.050 (9)0.045 (9)0.062 (12)0.017 (12)0.011 (9)0.005 (12)
K60.050 (9)0.045 (9)0.062 (12)0.017 (12)0.011 (9)0.005 (12)
Geometric parameters (Å, º) top
As1—O51.649 (8)K1—O3iii2.854 (6)
As1—O11.683 (8)K1—O3iv2.854 (6)
As1—O41.696 (6)K2—O42.891 (14)
As1—O4i1.696 (6)K2—O5x3.012 (16)
As2—O3ii1.670 (5)K3—O4vii2.50 (4)
As2—O31.670 (5)K3—O3iii2.53 (3)
As2—O2ii1.729 (5)K3—O52.54 (4)
As2—O21.729 (5)K3—O5ix2.57 (3)
Fe1—O1iii1.931 (7)K4—O42.950 (19)
Fe1—O11.931 (7)K4—O4ii2.950 (19)
Fe1—O2iii2.041 (5)K4—O5x2.975 (4)
Fe1—O22.041 (5)K4—O5xi2.975 (4)
Fe1—O2iv2.041 (5)K5—O5x2.877 (3)
Fe1—O2i2.041 (5)K5—O52.877 (3)
Fe2—O4ii1.908 (6)K5—O4x2.953 (6)
Fe2—O41.908 (6)K5—O42.953 (6)
Fe2—O3v2.032 (5)K6—O32.50 (4)
Fe2—O3vi2.032 (5)K6—O3i2.50 (4)
Fe2—O22.110 (5)K6—O2i2.66 (10)
Fe2—O2ii2.110 (5)K6—O22.66 (10)
K1—O52.561 (12)K6—O2vi2.69 (11)
K1—O4vii2.678 (8)K6—O2xii2.69 (11)
K1—O4viii2.678 (8)K6—O1iii2.83 (13)
K1—O5ix2.802 (11)
O5—As1—O1110.2 (4)O2—Fe1—O2iv85.4 (3)
O5—As1—O4111.8 (3)O1iii—Fe1—O2i87.1 (2)
O1—As1—O4108.9 (2)O1—Fe1—O2i92.9 (2)
O5—As1—O4i111.8 (3)O2iii—Fe1—O2i85.4 (3)
O1—As1—O4i108.9 (2)O2—Fe1—O2i94.6 (3)
O4—As1—O4i105.1 (4)O2iv—Fe1—O2i180.0 (4)
O3ii—As2—O3110.8 (4)O4ii—Fe2—O493.3 (3)
O3ii—As2—O2ii110.9 (2)O4ii—Fe2—O3v87.3 (2)
O3—As2—O2ii114.9 (2)O4—Fe2—O3v94.0 (2)
O3ii—As2—O2114.9 (2)O4ii—Fe2—O3vi94.0 (2)
O3—As2—O2110.9 (2)O4—Fe2—O3vi87.3 (2)
O2ii—As2—O293.4 (3)O3v—Fe2—O3vi178.1 (3)
O1iii—Fe1—O1180.0 (5)O4ii—Fe2—O2169.0 (2)
O1iii—Fe1—O2iii92.9 (2)O4—Fe2—O296.9 (2)
O1—Fe1—O2iii87.1 (2)O3v—Fe2—O287.9 (2)
O1iii—Fe1—O287.1 (2)O3vi—Fe2—O290.6 (2)
O1—Fe1—O292.9 (2)O4ii—Fe2—O2ii96.9 (2)
O2iii—Fe1—O2180.0 (4)O4—Fe2—O2ii169.0 (2)
O1iii—Fe1—O2iv92.9 (2)O3v—Fe2—O2ii90.6 (2)
O1—Fe1—O2iv87.1 (2)O3vi—Fe2—O2ii87.9 (2)
O2iii—Fe1—O2iv94.6 (3)O2—Fe2—O2ii73.2 (3)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y, z+1/2; (iii) x, y, z; (iv) x, y, z; (v) x+1/2, y, z1/2; (vi) x, y, z+1; (vii) x, y, z1; (viii) x, y, z1; (ix) x, y+1/2, z1/2; (x) x+1/2, y+1/2, z; (xi) x, y+1/2, z+1/2; (xii) x, y, z+1.
Indice de distorsion des polyèdres de coordination de Fe et As. top
IDdIDaIDo
Fe1O60.02410.03890.0306
Fe2O60.0367O.04880.0382
As1O40.00920.01660.0079
As2O40.01800.04850.0324
IDd = [Σi=1n1(|di-dm|)/n1dm], IDa = [Σi=1n2(|ai-am|)/n2am] et IDo = [Σi=1n2(|oi-om|)/n2om], avec d = distance Fe/As—O, a = angle O—Fe/As—O, o = distance O—O, m = valeur moyenne, et n1 et n2 valent 4 et 6 pour le tétraèdre et 6 et 12 pour l'octaèdre.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds