Received 16 May 2005 Accepted 20 May 2005

Online 31 May 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrew R. Cowley, Jonathan R. Dilworth* and Carlo A. Maresca von Beckh W.

University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: jon.dilworth@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.006 Å R factor = 0.039 wR factor = 0.041 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorotris(triphenylphosphine)ruthenium(II) dichloromethane hemisolvate

A third modification of $[RuCl_2(PPh_3)_3]$ has been characterized, this time as the title compound, $[RuCl_2(C_{18}H_{15}P)_3]$. 0.5CH₂Cl₂. As seen for the previous modifications, the complex has a distorted square-pyramidal geometry with an *ortho*-H atom 'blocking' the site *trans* to the apical PPh₃ ligand. There is no evidence for a strong C-H···Ru interaction nor any specific directional force in the solid state.

Comment

Two different modifications of $[RuCl_2(PPh_3)_3]$ have been solved in the space groups $P2_1/c$ (La Placa & Ibers, 1965) and $P2_1/n$ (Ernst *et al.*, 2003). Both show a distorted squarepyramidal geometry about Ru, with an *ortho*-H atom approaching the metal and 'blocking' the site *trans* to the apical PPh₃ ligand. As part of our studies on Ru^{II} thioether complexes, we discovered the title compound, (I), (Fig. 1), also containing the $[RuCl_2(PPh_3)_3]$ complex, as the dichloromethane hemisolvate in the space group C2/c.

The metal complex in (I) adopts a distorted square-pyramidal geometry with bond lengths, angles and phenyl ring orientations virtually identical to the $P2_1/c$ modification of [RuCl₂(PPh₃)₃]. In fact, most [Ru^{II}X₂(PPh₃)₃] complexes are distorted square-pyramidal (Anillo *et al.*, 1993; MacFarlane *et al.*, 1996), due to electronic (vibrational distortions, Jahn– Teller effects) and/or steric reasons.

The shortest Ru···H distance in (I) is due to an *ortho*-H atom located approximately *trans* to P2 [Ru1···H2 = 2.83 (4) Å and P2–Ru1···H2 = 168 (2)°]. The shortest Ru···C distance in (I) [Ru1···C2 3.445 (4) Å] is average for penta-coordinate [Ru^{II}(PPh₃)₃] complexes (Anillo *et al.*, 1993; MacFarlane *et al.*, 1996) and some 0.2 Å shorter than in [Ru⁰(CO)₂(PPh₃)₃] (Hiraki *et al.*, 1997). It is 0.1–0.3 Å shorter than the analogous distance in hexa-coordinate [Ru^{II}(PPh₃)₃] complexes (Skapski & Stephens, 1974; Alexander *et al.*, 1988;

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I), with displacement ellipsoids shown at the 50% probability level. The solvent molecule and most H atoms have been omitted for clarity.

Mizuho et al., 1991; Poulton et al., 1992; Junk & Steed, 1999; Jazzar et al., 2001) and some 0.2 Å longer than in tetra-coordinate $[Ru^{II}(SC_6F_5)_2(PPh_3)_2]$ (Catalá *et al.*, 1987, 1989). There is no elongation of the C2-H2 bond in (I) as observed in the $P2_1/n$ modification of [RuCl₂(PPh₃)₃], so overall there appears to be no strong $C2-H2\cdots Ru1$ interaction in (I).

 $[RuCl_2(PPh_3)_3]$ has been referred to as an agostic complex (Leung et al., 2000; Perera & Shaw, 1994, 1995; Catalá et al., 1987, 1989), but much shorter and stronger agostic $C-H \cdots Ru$ bonds are known (Huang et al., 1999, 2000; Jiménez Tenorio et al., 2000). The close approach of the ortho-H atom to Ru and subsequent 'blocking' of the site trans to the apical PPh₃ ligand may therefore be due to a weak $C-H \cdots Ru$ interaction, steric crowding of the metal centre and/or crystal packing forces in the solid state.

The crystal packing in (I) is unexceptional and gives no indication of any specific directional force being present. The CH₂Cl₂ solvent molecule lies on a twofold symmetry axis and plays no role in metal coordination.

Experimental

[RuCl₂(PPh₃)₃] was synthesized according to the literature method of Hallman et al. (1970) but using only one-quarter the specified volume of methanol. Suitable single crystals of (I) were grown by two-phase dichloromethane-methanol liquid diffusion.

Crystal data

[RuCl₂(C₁₈H₁₅P)₃]·0.5CH₂Cl₂ $M_r = 1001.31$ Monoclinic, C2/c a = 22.2083 (2) Å b = 12.84460 (10) Åc = 33.9272 (5) Å $\beta = 107.5681 (5)^{\circ}$ $V = 9226.57 (18) \text{ Å}^3$ Z = 8

 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 17441 reflections $\theta = 5.0-27.5^{\circ}$ $\mu = 0.66~\mathrm{mm}^{-1}$ T = 150 KBlock, purple-brown 0.10 \times 0.10 \times 0.10 mm

Data collection

Table 1

Nonius KappaCCD area-detector diffractometer ω scans Absorption correction: multi-scan (<i>DENZO</i> and <i>SCALEPACK</i> ;	10441 independent reflections 6083 reflections with $I > 3\sigma(I)$ $R_{int} = 0.05$ $\theta_{max} = 27.5^{\circ}$ $h = -28 \rightarrow 28$
Otwinowski & Minor, 1997)	$k = -14 \rightarrow 16$
$T_{\min} = 0.93, T_{\max} = 0.94$	$l = -44 \rightarrow 43$
17441 measured reflections	
Refinement	
Refinement on F	$w = [1 - (F_{\rm o} - F_{\rm c})^2/36\sigma(F_{\rm o})^2]^2/$
$R[F^2 > 2\sigma(F^2)] = 0.039$	$0.437T_0(x) + 0.0688T_1(x)$
$wR(F^2) = 0.041$	$+ 0.16T_2(x)],$
S = 1.11	where $T_n(x)$ are Chebychev
6083 reflections	polynomials and $x = F_c/F_{max}$
563 parameters	(Watkin, 1994; Prince, 1982)
H atoms treated by a mixture of	$(\Delta/\sigma)_{\rm max} = 0.001$
independent and constrained	$\Delta \rho_{\rm max} = 1.76 \ {\rm e} \ {\rm \AA}^{-3}$

refinement

Selected geometric parameters (Å, °).

Ru1-P3	2.3557 (9)	Ru1-Cl1	2.3916 (9)
Ru1-P2	2.2118 (10)	C2-H2	0.94 (4)
Ru1-P1	2.4334 (9)	C50-H50	0.96 (5)
Ru1-Cl2	2.3732 (9)		
P3-Ru1-P2	98.27 (4)	P1-Ru1-Cl2	91.36 (3)
P3-Ru1-P1	160.12 (4)	P3-Ru1-Cl1	86.29 (3)
P2-Ru1-P1	101.08 (4)	P2-Ru1-Cl1	107.46 (4)
P3-Ru1-Cl2	92.05 (3)	P1-Ru1-Cl1	83.63 (3)
P2-Ru1-Cl2	93.27 (4)	Cl2-Ru1-Cl1	159.24 (4)

 $\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Atoms H2 and H50 were located in a difference Fourier map and their coordinates and isotropic displacement parameters were subsequently refined. All other H atoms were positioned geometrically with C-H = 1.00 Å. The most positive and negative residual electron densities are located 1.11 and 1.05 Å from Cl61, respectively, possibly indicating disorder in the CH₂Cl₂ solvent molecule. No attempt was made to model this disorder.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

- Alexander, B. D., Gomez-Sal, M. P., Gannon, P. R., Blaine, C. A., Boyle, P. D., Mueting, A. M. & Pignolet, L. H. (1988). Inorg. Chem. 27, 3301-3308.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Anillo, A., Barrio, C., García-Granda, S. & Obeso-Rosete, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1125-1130.

- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Catalá, R.-M., Cruz-Garritz, D., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1987). J. Organomet. Chem. 328, C37-C39.
- Catalá, R.-M., Cruz-Garritz, D., Sosa, P., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1989). J. Organomet. Chem. 359, 219-232.

Ernst, R. D., Basta, R. & Arif, A. M. (2003). Z. Kristallogr. New Cryst. Struct. 218. 49-51

Hallman, P. S., Stephenson T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237-240

Hiraki, K., Kira, S. & Kawano H. (1997). Bull. Chem. Soc. Jpn, 70, 1583-1592.

- Huang, D., Bollinger, J. C., Streib, W. E., Folting, K., Young, V. Jr, Eisenstein, O. & Caulton, K. G. (2000). Organometallics, 19, 2281–2290.
- Huang, D., Streib, W. E., Bollinger, J. C., Caulton, K. G., Winter, R. F. & Scheiring T. (1999). J. Am. Chem. Soc. 121, 8087–8097.
- Jazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, **20**, 3745–3751.
- Jiménez Tenorio, M., Mereiter, K., Puerta, M. C. & Valerga, P. (2000). J. Am. Chem. Soc. 122, 11230–11231.
- Junk, P. C. & Steed, J. W. (1999). J. Organomet. Chem. 587, 191-194.
- La Placa, S. J. & Ibers, J. A. (1965). Inorg. Chem. 4, 778-783.
- Leung, W.-H., Zheng, H., Chim, J. L. C., Chan, J., Wong, W.-T. & Williams, I. D. (2000). J. Chem. Soc. Dalton Trans. pp. 423–430.
- MacFarlane, K. S., Joshi, A. M., Rettig, S. J. & James, B. R. (1996). *Inorg. Chem.* 35, 7304–7310.
- Mizuho, Y., Kasuga, N. & Komiya, S. (1991). Chem. Lett. pp. 2127-2130.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Perera, S. D. & Shaw, B. L. (1994). J. Chem. Soc. Chem. Commun. pp. 1201–1202.
- Perera, S. D. & Shaw, B. L. (1995). J. Chem. Soc. Dalton Trans. pp. 3861-3866.
- Poulton, J. T., Folting, K. & Caulton, K. G. (1992). Organometallics, 11, 1364– 1372.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Skapski, A. C. & Stephens, F. A. (1974). J. Chem. Soc. Dalton Trans. pp. 390– 395.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (2005). E61, m1237-m1239 [https://doi.org/10.1107/S1600536805016272]

Dichlorotris(triphenylphosphine)ruthenium(II) dichloromethane hemisolvate

Andrew R. Cowley, Jonathan R. Dilworth and Carlo A. Maresca von Beckh W.

Dichlorotris(triphenylphosphine)ruthenium(II) dichloromethane hemisolvate

Crystal data

[RuCl₂(C₁₈H₁₅P)₃]·0.5CH₂Cl₂ $M_r = 1001.31$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.2083 (2) Å b = 12.8446 (1) Å c = 33.9272 (5) Å $\beta = 107.5681$ (5)° V = 9226.57 (18) Å³ Z = 8

Data collection

Nonius KappaCCD area-detector diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.93, T_{\max} = 0.94$

Refinement

Refinement on *F* Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.041$ S = 1.116083 reflections 563 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 4104 $D_x = 1.442 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 17441 reflections $\theta = 5.0-27.5^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 150 KBlock, purple-brown $0.10 \times 0.10 \times 0.10 \text{ mm}$

17441 measured reflections 10441 independent reflections 6083 reflections with $I > 3\sigma(I)$ $R_{int} = 0.05$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 5.1^{\circ}$ $h = -28 \rightarrow 28$ $k = -14 \rightarrow 16$ $l = -44 \rightarrow 43$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982). [weight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \cdots + A_{n-1}]*T_{n-1}(x)]$ where A_i are the Chebychev coefficients 0.437 0.688E-01 0.160 and x = F / Fmax. Method, part 2, Robust Weighting (Prince, 1982). W = [weight]*[1-(deltaF/6*sigmaF)²]² $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.76$ e Å⁻³ $\Delta\rho_{min} = -1.04$ e Å⁻³

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ru1	0.775455 (13)	-0.12420 (2)	0.118831 (8)	0.0156	
Cl1	0.82062 (4)	-0.18547 (8)	0.18806 (3)	0.0225	
Cl2	0.71825 (4)	-0.12677 (9)	0.04738 (3)	0.0286	
P1	0.67803 (4)	-0.12197 (8)	0.13763 (3)	0.0170	
P2	0.79616 (5)	0.04418 (7)	0.11854 (3)	0.0183	
P3	0.86747 (4)	-0.18753 (8)	0.10621 (3)	0.0185	
C1	0.65610 (18)	-0.2584 (3)	0.14161 (11)	0.0215	
C2	0.6878 (2)	-0.3382 (3)	0.12885 (13)	0.0251	
C3	0.6658 (2)	-0.4400 (3)	0.12618 (15)	0.0327	
C4	0.6119 (2)	-0.4626 (3)	0.13678 (14)	0.0318	
C5	0.57960 (19)	-0.3843 (4)	0.15002 (13)	0.0299	
C6	0.60135 (19)	-0.2830 (3)	0.15204 (13)	0.0262	
C7	0.68439 (18)	-0.0651 (3)	0.18829 (11)	0.0220	
C8	0.69975 (19)	-0.1256 (4)	0.22389 (12)	0.0283	
C9	0.7116 (3)	-0.0785 (4)	0.26248 (13)	0.0428	
C10	0.7082 (2)	0.0290 (4)	0.26578 (14)	0.0423	
C11	0.6924 (2)	0.0890 (4)	0.23038 (14)	0.0328	
C12	0.68043 (19)	0.0428 (3)	0.19190 (12)	0.0255	
C13	0.59868 (17)	-0.0829 (3)	0.10429 (11)	0.0193	
C14	0.57985 (18)	-0.1250 (4)	0.06433 (12)	0.0301	
C15	0.5188 (2)	-0.1096 (4)	0.03881 (13)	0.0405	
C16	0.4751 (2)	-0.0551 (4)	0.05218 (15)	0.0420	
C17	0.4931 (2)	-0.0157 (4)	0.09183 (17)	0.0414	
C18	0.5553 (2)	-0.0277 (3)	0.11781 (14)	0.0301	
C19	0.72758 (17)	0.1308 (3)	0.10889 (12)	0.0222	
C20	0.67111 (19)	0.1063 (3)	0.07843 (13)	0.0270	
C21	0.61850 (19)	0.1703 (4)	0.07249 (14)	0.0324	
C22	0.6206 (2)	0.2566 (4)	0.09678 (16)	0.0393	
C23	0.6755 (2)	0.2819 (3)	0.12672 (16)	0.0363	
C24	0.72886 (19)	0.2215 (3)	0.13245 (13)	0.0277	
C25	0.84676 (17)	0.1040 (3)	0.16634 (12)	0.0217	
C26	0.84022 (18)	0.0704 (3)	0.20377 (12)	0.0250	
C27	0.8708 (2)	0.1208 (4)	0.24050 (13)	0.0345	
C28	0.9091 (2)	0.2054 (4)	0.24021 (16)	0.0442	
C29	0.9165 (2)	0.2397 (4)	0.20337 (16)	0.0416	
C30	0.8852 (2)	0.1904 (3)	0.16658 (14)	0.0303	
C31	0.83186 (18)	0.0890 (3)	0.07931 (12)	0.0214	
C32	0.8972 (2)	0.0854 (3)	0.08688 (13)	0.0295	
C33	0.9245 (2)	0.1236 (4)	0.05824 (15)	0.0394	
C34	0.8874 (2)	0.1626 (4)	0.02092 (16)	0.0416	
C35	0.8222 (2)	0.1631 (4)	0.01210 (14)	0.0376	
C36	0.79494 (19)	0.1269 (4)	0.04112 (12)	0.0282	
C37	0.89276 (18)	-0.1568 (3)	0.06048 (12)	0.0224	
C38	0.8486 (2)	-0.1444 (4)	0.02180 (13)	0.0323	
C39	0.8675 (2)	-0.1226 (4)	-0.01271 (13)	0.0359	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C40	0.9296 (2)	-0.1117 (4)	-0.00982(14)	0.0417
C41	0.9740 (2)	-0.1186 (5)	0.02893 (17)	0.0552
C42	0.9561 (2)	-0.1401 (5)	0.06367 (15)	0.0440
C43	0.94259 (17)	-0.1839 (3)	0.14762 (11)	0.0209
C44	0.95713 (18)	-0.0994 (3)	0.17480 (12)	0.0235
C45	1.0165 (2)	-0.0900 (4)	0.20395 (13)	0.0297
C46	1.0612 (2)	-0.1662 (4)	0.20716 (13)	0.0350
C47	1.0473 (2)	-0.2513 (4)	0.18098 (15)	0.0386
C48	0.9888 (2)	-0.2605(3)	0.15141 (14)	0.0318
C49	0.84951 (18)	-0.3283(3)	0.10039 (12)	0.0223
C50	0.8574 (2)	-0.3899(3)	0.13559 (13)	0.0267
C51	0.8413(2)	-0.4943(4)	0.13162 (14)	0.0331
C52	0.8165(2)	-0.5394(3)	0.09296(15)	0.0363
C53	0.8078(2)	-0.4782(4)	0.05796 (14)	0.0378
C54	0.8242(2)	-0.3729(4)	0.06187(12)	0.0306
C161	1.02310(13)	-0.51128(15)	0.00107(12) 0.21487(8)	0.1049
C62	1.0000	-0.4347(8)	0.2500	0.0865
U02 H2	0.725(2)	-0.325(3)	0.1222 (13)	0.026 (11)*
H50	0.723(2) 0.877(2)	-0.359(4)	0.1222(15) 0.1621(15)	0.020(11)
H3	0.6889	-0.4967	0.1166	0.032 (12)
115 Н4	0.0889	-0.5359	0.1340	0.0375*
н . Н2	0.5701	-0.4011	0.1549	0.0356*
н5 Н6	0.5776	-0.2263	0.1580	0.0330*
110 ЦQ	0.3770	-0.2203	0.2218	0.0325
110 ЦО	0.7023	-0.1224	0.2218	0.0506*
H10	0.7227	0.1224	0.2880	0.0300*
ни Н11	0.7170	0.0020	0.2325	0.0499
нн H12	0.6688	0.1004	0.2525	0.0400
1112 Ц14	0.6105	-0.1661	0.1005	0.0314
ПП4 Ц15	0.0103	-0.1386	0.0342	0.0352
Ш15 Ц16	0.3002	-0.0444	0.0334	0.0473*
ПТО Ц17	0.4512	0.0444	0.0334	0.0473*
П1/ Ц19	0.4013	0.0219	0.1022	0.0469*
1110 1120	0.5082	0.0030	0.1401	0.0303
П20 Ц21	0.0085	0.0429	0.0009	0.0328
П21 1122	0.5780	0.1331	0.0302	0.0377*
П22 Ц22	0.3822	0.3009	0.0926	0.0487
П23 1124	0.0770	0.3443	0.1443	0.0433*
H24	0.7691	0.2425	0.1537	0.0327*
H20	0.8129	0.0087	0.2042	0.0282*
H2/	0.8652	0.0960	0.2671	0.0406*
H28	0.9315	0.2417	0.2667	0.0505*
H29	0.9446	0.3004	0.2033	0.048/*
H30	0.8901	0.2168	0.1400	0.0362*
H32	0.9246	0.0548	0.1133	0.0367*
H33	0.9715	0.1229	0.0646	0.0502*
H34	0.9074	0.1904	0.0003	0.0543*
H35	0.7950	0.1896	-0.0152	0.0465*
H36	0.7479	0.1279	0.0346	0.0346*

H38	0.8025	-0.1514	0.0188	0.0400*
H39	0.8348	-0.1146	-0.0402	0.0432*
H40	0.9430	-0.0992	-0.0350	0.0540*
H41	1.0197	-0.1077	0.0317	0.0699*
H42	0.9889	-0.1438	0.0913	0.0537*
H44	0.9244	-0.0448	0.1733	0.0283*
H45	1.0266	-0.0278	0.2225	0.0357*
H46	1.1036	-0.1602	0.2283	0.0397*
H47	1.0798	-0.3068	0.1834	0.0436*
H48	0.9796	-0.3224	0.1326	0.0367*
H51	0.8476	-0.5378	0.1570	0.0407*
H52	0.8051	-0.6149	0.0903	0.0439*
H53	0.7897	-0.5096	0.0299	0.0429*
H54	0.8175	-0.3293	0.0365	0.0353*
H62	1.0362	-0.3898	0.2654	0.1098*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	U ²³
Ru1	0.01569 (13)	0.01675 (13)	0.01414 (13)	0.00115 (14)	0.00420 (10)	0.00035 (13)
Cl1	0.0232 (5)	0.0269 (5)	0.0163 (4)	0.0038 (4)	0.0042 (3)	0.0024 (4)
Cl2	0.0235 (4)	0.0449 (6)	0.0155 (4)	0.0021 (5)	0.0033 (3)	-0.0034 (5)
P1	0.0173 (4)	0.0189 (4)	0.0153 (4)	0.0002 (4)	0.0056 (3)	0.0001 (4)
P2	0.0174 (5)	0.0176 (5)	0.0193 (4)	0.0008 (4)	0.0045 (4)	0.0008 (4)
P3	0.0150 (4)	0.0228 (5)	0.0170 (4)	0.0025 (4)	0.0040 (4)	-0.0012 (4)
C1	0.0212 (19)	0.022 (2)	0.0206 (18)	-0.0025 (15)	0.0051 (15)	0.0011 (15)
C2	0.022 (2)	0.024 (2)	0.031 (2)	0.0003 (16)	0.0103 (17)	0.0049 (16)
C3	0.037 (3)	0.023 (2)	0.041 (3)	-0.0021 (19)	0.015 (2)	-0.0046 (18)
C4	0.037 (3)	0.024 (2)	0.032 (2)	-0.0059 (19)	0.0082 (19)	0.0007 (18)
C5	0.024 (2)	0.029 (2)	0.035 (2)	-0.0067 (18)	0.0078 (17)	0.0079 (19)
C6	0.026 (2)	0.024 (2)	0.031 (2)	0.0011 (17)	0.0129 (17)	-0.0007 (17)
C7	0.0225 (19)	0.030 (2)	0.0161 (17)	-0.0006 (16)	0.0093 (15)	-0.0025 (15)
C8	0.032 (2)	0.031 (2)	0.0241 (19)	-0.003 (2)	0.0104 (16)	-0.0009 (19)
C9	0.059 (3)	0.049 (3)	0.018 (2)	0.012 (3)	0.009 (2)	0.004 (2)
C10	0.041 (3)	0.060 (3)	0.024 (2)	0.001 (2)	0.007 (2)	-0.014 (2)
C11	0.033 (2)	0.033 (2)	0.034 (2)	-0.0033 (19)	0.0125 (19)	-0.0103 (19)
C12	0.021 (2)	0.031 (2)	0.027 (2)	0.0000 (16)	0.0100 (16)	-0.0031 (17)
C13	0.0150 (17)	0.0209 (18)	0.0205 (18)	-0.0040 (15)	0.0028 (14)	0.0006 (15)
C14	0.0226 (19)	0.039 (2)	0.027 (2)	0.000 (2)	0.0037 (15)	-0.004(2)
C15	0.032 (2)	0.057 (3)	0.028 (2)	0.002 (2)	0.0026 (18)	-0.003 (2)
C16	0.026 (2)	0.051 (3)	0.042 (3)	0.006 (2)	-0.001(2)	-0.002 (2)
C17	0.020 (2)	0.038 (3)	0.064 (3)	0.0036 (19)	0.010 (2)	-0.012 (2)
C18	0.025 (2)	0.030(2)	0.035 (2)	-0.0011 (18)	0.0099 (18)	-0.0088 (19)
C19	0.0221 (18)	0.0184 (18)	0.0272 (19)	0.0046 (17)	0.0091 (15)	0.0095 (17)
C20	0.026 (2)	0.026 (2)	0.031 (2)	0.0034 (16)	0.0097 (17)	0.0101 (17)
C21	0.021 (2)	0.039 (3)	0.034 (2)	0.0070 (18)	0.0035 (17)	0.017 (2)
C22	0.027 (2)	0.039 (3)	0.055 (3)	0.018 (2)	0.018 (2)	0.017 (2)
C23	0.035 (2)	0.026 (2)	0.052 (3)	0.0131 (19)	0.020 (2)	0.006 (2)

C24	0.025 (2)	0.0199 (19)	0.037 (2)	-0.0027 (17)	0.0073 (17)	0.0032 (17)
C25	0.0172 (18)	0.018 (2)	0.027 (2)	0.0041 (14)	0.0031 (15)	-0.0028 (15)
C26	0.0187 (19)	0.026 (2)	0.026 (2)	0.0014 (16)	0.0001 (15)	-0.0076 (16)
C27	0.032 (2)	0.037 (2)	0.032 (2)	0.004 (2)	0.0064 (18)	-0.009 (2)
C28	0.036 (3)	0.046 (3)	0.044 (3)	-0.004 (2)	0.003 (2)	-0.020 (2)
C29	0.034 (3)	0.034 (3)	0.054 (3)	-0.012 (2)	0.009 (2)	-0.018 (2)
C30	0.025 (2)	0.022 (2)	0.043 (3)	-0.0013 (17)	0.0100 (19)	-0.0018 (18)
C31	0.026 (2)	0.0142 (17)	0.026 (2)	0.0004 (15)	0.0099 (16)	0.0035 (15)
C32	0.030 (2)	0.031 (2)	0.031 (2)	0.0048 (18)	0.0143 (18)	0.0074 (18)
C33	0.032 (2)	0.046 (3)	0.048 (3)	0.006 (2)	0.023 (2)	0.015 (2)
C34	0.047 (3)	0.044 (3)	0.044 (3)	-0.002 (2)	0.030(2)	0.010 (2)
C35	0.049 (3)	0.041 (3)	0.027 (2)	0.005 (2)	0.017 (2)	0.0114 (19)
C36	0.029 (2)	0.030(2)	0.028 (2)	0.004 (2)	0.0115 (16)	0.0039 (19)
C37	0.0200 (19)	0.024 (2)	0.026 (2)	0.0026 (15)	0.0116 (16)	-0.0005 (15)
C38	0.029 (2)	0.046 (3)	0.025 (2)	-0.0026 (19)	0.0129 (17)	0.0041 (19)
C39	0.039 (2)	0.045 (3)	0.023 (2)	0.002 (2)	0.0098 (18)	0.003 (2)
C40	0.044 (3)	0.056 (3)	0.036 (2)	0.009 (2)	0.027 (2)	0.008 (2)
C41	0.031 (2)	0.092 (4)	0.052 (3)	0.009 (3)	0.026 (2)	0.021 (3)
C42	0.027 (2)	0.069 (4)	0.039 (3)	0.014 (2)	0.013 (2)	0.013 (3)
C43	0.0154 (18)	0.026 (2)	0.0197 (18)	0.0023 (15)	0.0027 (14)	0.0026 (16)
C44	0.0223 (19)	0.028 (2)	0.0207 (18)	-0.0007 (15)	0.0069 (15)	-0.0021 (15)
C45	0.025 (2)	0.040 (2)	0.024 (2)	-0.0089 (18)	0.0078 (17)	-0.0039 (18)
C46	0.021 (2)	0.052 (3)	0.026 (2)	-0.003 (2)	-0.0019 (17)	0.006 (2)
C47	0.025 (2)	0.043 (3)	0.041 (3)	0.010 (2)	-0.0002 (19)	0.009 (2)
C48	0.023 (2)	0.032 (2)	0.036 (2)	0.0028 (18)	0.0039 (17)	-0.0039 (19)
C49	0.022 (2)	0.022 (2)	0.024 (2)	0.0010 (16)	0.0087 (16)	-0.0035 (16)
C50	0.033 (2)	0.022 (2)	0.026 (2)	0.0055 (17)	0.0104 (17)	-0.0015 (17)
C51	0.035 (2)	0.031 (2)	0.036 (2)	0.0061 (19)	0.014 (2)	0.0080 (19)
C52	0.044 (3)	0.022 (2)	0.044 (3)	0.0001 (19)	0.015 (2)	-0.0026 (19)
C53	0.044 (3)	0.031 (2)	0.032 (2)	-0.006 (2)	0.002 (2)	-0.0061 (19)
C54	0.034 (2)	0.032 (2)	0.0222 (19)	0.000(2)	0.0035 (16)	0.001 (2)
Cl61	0.164 (2)	0.0642 (11)	0.1330 (19)	-0.0189 (13)	0.1155 (18)	-0.0077 (11)
C62	0.144 (11)	0.069 (7)	0.061 (6)	0.0000	0.053 (7)	0.0000

Geometric parameters (Å, °)

Ru1—P3	2.3557 (9)	C25—C30	1.399 (5)
Ru1—P2	2.2118 (10)	C25—C26	1.389 (6)
Ru1—P1	2.4334 (9)	C26—H26	1.000
Ru1—Cl2	2.3732 (9)	C26—C27	1.387 (6)
Ru1—Cl1	2.3916 (9)	С27—Н27	1.000
P1—C13	1.853 (4)	C27—C28	1.382 (7)
P1—C7	1.834 (4)	C28—H28	1.000
P1—C1	1.835 (4)	C28—C29	1.381 (7)
P2-C31	1.836 (4)	С29—Н29	1.000
P2—C25	1.839 (4)	C29—C30	1.385 (6)
P2—C19	1.834 (4)	С30—Н30	1.000
P3—C49	1.850 (4)	C31—C36	1.395 (6)

P3—C43	1.829 (4)	C31—C32	1.396 (6)
Р3—С37	1.845 (4)	С32—Н32	1.000
C1—C6	1.401 (5)	C32—C33	1.381 (6)
C1—C2	1.384 (6)	С33—Н33	1.000
С2—Н2	0.94 (4)	C33—C34	1.380 (7)
C2—C3	1.389 (6)	C34—H34	1.000
С3—Н3	1.000	C34—C35	1.387 (7)
C3—C4	1.379 (6)	С35—Н35	1.000
C4—H4	1.000	C35—C36	1.383 (6)
C4—C5	1.387 (6)	С36—Н36	1.000
С5—Н5	1.000	C37—C42	1.395 (6)
C5—C6	1.383 (6)	C37—C38	1.391 (6)
С6—Н6	1.000	C38—H38	1.000
C7—C12	1.396 (6)	C38—C39	1.387 (6)
C7—C8	1.389 (6)	С39—Н39	1.000
C8—H8	1 000	C_{39} C_{40}	1 361 (6)
C8-C9	1 393 (6)	C40—H40	1.000
С9—Н9	1,000	C40-C41	1.000 1.387(7)
C_{9}	1 390 (7)	C_{41} H41	1.000
C_{10} H_{10}	1.000	$C_{41} = C_{42}$	1.000
C_{10} C_{11}	1.000	$C_{41} = C_{42}$	1.000
	1.380 (7)	$C_{42} = 1142$	1.000
	1.000	$C_{43} = C_{48}$	1.399(0) 1.308(5)
C12 $U12$	1.385 (0)	C44 = U44	1.398 (3)
C12D12	1.000	C44—H44	1.000
	1.381 (5)	C44—C45	1.395 (5)
	1.401 (5)	C45—H45	1.000
C14—H14	1.000	C45 - C46	1.3/5 (6)
	1.384 (6)	C46—H46	1.000
С15—Н15	1.000	C46—C47	1.383 (7)
C15—C16	1.379 (7)	C47—H47	1.000
C16—H16	1.000	C47—C48	1.386 (6)
C16—C17	1.379 (7)	C48—H48	1.000
С17—Н17	1.000	C49—C54	1.382 (6)
C17—C18	1.405 (6)	C49—C50	1.398 (6)
C18—H18	1.000	С50—Н50	0.96 (5)
C19—C24	1.409 (6)	C50—C51	1.384 (6)
C19—C20	1.399 (6)	C51—H51	1.000
C20—H20	1.000	C51—C52	1.387 (7)
C20—C21	1.392 (6)	C52—H52	1.000
C21—H21	1.000	C52—C53	1.388 (7)
C21—C22	1.374 (7)	С53—Н53	1.000
C22—H22	1.000	C53—C54	1.396 (6)
C22—C23	1.370 (7)	С54—Н54	1.000
С23—Н23	1.000	Cl61—C62	1.738 (6)
C23—C24	1.380 (6)	С62—Н62	1.000
C24—H24	1.000	C62—H62 ⁱ	1.000
P3—Ru1—P2	98.27 (4)	H24—C24—C19	119.469

	1 (0, 1, 0, (4))		101 1 (1)
P3—Ru1—P1	160.12 (4)	C23—C24—C19	121.1 (4)
P2—Ru1—P1	101.08 (4)	C30—C25—C26	118.2 (4)
P3—Ru1—Cl2	92.05 (3)	C30—C25—P2	123.1 (3)
P2—Ru1—Cl2	93.27 (4)	C26—C25—P2	118.1 (3)
P1—Ru1—Cl2	91.36 (3)	H26—C26—C27	119.394
P3—Ru1—Cl1	86.29 (3)	H26—C26—C25	119.394
P2—Ru1—C11	107.46 (4)	C27—C26—C25	121.2 (4)
P1—Ru1—C11	83.63 (3)	H27—C27—C28	120.112
Cl2— $Ru1$ — $Cl1$	159 24 (4)	H_{27} C 27 C 26	120 111
C13 P1 C7	104.73(17)	C_{28} C_{27} C_{26}	120.111 110.8(4)
C_{13} P_1 C_1	04.51(17)	$H_{28} = C_{28} = C_{20}$	120.056
C_{13} D_{1} C_{1}	94.31(17) 104.07(18)	$H_{20} = C_{20} = C_{27}$	120.050
$C_{1} = C_{1}$	104.97(10)	$H_{20} = C_{20} = C_{27}$	120.033
CI3—PI—Kul	126.89 (12)	129 - 128 - 127	119.9 (4)
C/—PI—Rul	115.31 (12)	H29—C29—C30	119.791
C1—P1—Ru1	106.55 (13)	H29—C29—C28	119.791
C31—P2—C25	103.05 (18)	C30—C29—C28	120.4 (4)
C31—P2—C19	101.39 (17)	H30—C30—C29	119.774
C25—P2—C19	99.07 (17)	H30—C30—C25	119.774
C31—P2—Ru1	116.49 (13)	C29—C30—C25	120.5 (4)
C25—P2—Ru1	118.48 (13)	C36—C31—C32	118.0 (4)
C19—P2—Ru1	115.55 (13)	C36—C31—P2	121.4 (3)
C49—P3—C43	102.95 (18)	C32—C31—P2	120.6 (3)
C49—P3—C37	103.29 (17)	H32—C32—C33	119.615
C43—P3—C37	101.65 (17)	H32—C32—C31	119.615
C49 - P3 - Ru1	100.72(12)	$C_{33} - C_{32} - C_{31}$	120 8 (4)
C43 - P3 - Ru1	11946(12)	H_{33} C_{33} C_{34}	119 781
C_{37} P3 Rul	125.45(13)	H_{33} C_{33} C_{32}	119.781
C6-C1-C2	123.43(13) 118 3 (4)	C_{34} C_{33} C_{32}	120.4(4)
C_{0}	110.3(4)	$H_{24} = C_{24} = C_{32}$	120.4(4)
$C_0 - C_1 - P_1$	120.2(3)	$H_{24} = C_{24} = C_{22}$	120.145
	120.9 (3)	$H_{34} - C_{34} - C_{33}$	120.143
H2-C2-C3	118 (3)	C35—C34—C33	119.7 (4)
H2—C2—C1	121 (3)	H35—C35—C36	120.082
C3—C2—C1	121.0 (4)	H35—C35—C34	120.082
H3—C3—C4	120.114	C36—C35—C34	119.8 (4)
H3—C3—C2	120.114	H36—C36—C35	119.419
C4—C3—C2	119.8 (4)	H36—C36—C31	119.419
H4—C4—C5	119.779	C35—C36—C31	121.2 (4)
H4—C4—C3	119.780	C42—C37—C38	117.6 (4)
C5—C4—C3	120.4 (4)	C42—C37—P3	121.6 (3)
H5—C5—C6	120.302	C38—C37—P3	120.7 (3)
H5—C5—C4	120.302	H38—C38—C39	119.586
C6—C5—C4	119.4 (4)	H38—C38—C37	119.586
H6—C6—C5	119.462	C39—C38—C37	120.8 (4)
H6—C6—C1	119 463	H39-C39-C40	119 367
C_{5}	121 1 (4)	H_{39} C_{39} C_{38}	119 366
C12 - C7 - C8	119 0 (4)	C40-C39-C38	121 3 (4)
$C_{12} = C_7 = C_0$	110.2 (3)	$H_{40} = C_{40} = C_{41}$	121.5 (+)
$C_{12} - C_{7} - C_{11}$	117.2(3)	11+0 - C+0 - C+1	120.771
U0-U/PI	121.4 (3)	H40-C40-C39	120.770

Н8—С8—С9	119.976	C41—C40—C39	118.5 (4)
H8—C8—C7	119.976	H41—C41—C42	119.433
C9—C8—C7	120.0 (4)	H41—C41—C40	119.433
H9—C9—C10	119.728	C42—C41—C40	121.1 (4)
Н9—С9—С8	119.727	H42—C42—C41	119.752
C10—C9—C8	120.5 (4)	H42—C42—C37	119.752
H10-C10-C11	120.324	C41—C42—C37	120.5 (4)
H10—C10—C9	120.324	C48—C43—C44	117.9 (3)
C11—C10—C9	119.4 (4)	C48—C43—P3	121.8 (3)
H11—C11—C12	119.757	C44—C43—P3	120.1 (3)
H11—C11—C10	119.757	H44—C44—C45	119.480
C12—C11—C10	120.5 (4)	H44—C44—C43	119.479
H12—C12—C11	119.712	C45—C44—C43	121.0 (4)
H12—C12—C7	119.712	H45—C45—C46	119.991
C11—C12—C7	120.6 (4)	H45—C45—C44	119.991
C18—C13—C14	119.0 (4)	C46—C45—C44	120.0 (4)
C18—C13—P1	124.5 (3)	H46—C46—C47	120.138
C14—C13—P1	116.0 (3)	H46—C46—C45	120.138
H14—C14—C15	119.991	C47—C46—C45	119.7 (4)
H14—C14—C13	119.991	H47—C47—C48	119.636
C15—C14—C13	120.0 (4)	H47—C47—C46	119.637
H15—C15—C16	119.345	C48—C47—C46	120.7 (4)
H15—C15—C14	119.345	H48—C48—C47	119.733
C16—C15—C14	121.3 (4)	H48—C48—C43	119.733
H16—C16—C17	120.599	C47—C48—C43	120.5 (4)
H16—C16—C15	120.599	C54—C49—C50	118.9 (4)
C17—C16—C15	118.8 (4)	C54—C49—P3	121.3 (3)
H17—C17—C18	119.599	C50—C49—P3	119.6 (3)
H17—C17—C16	119.599	H50—C50—C51	121 (3)
C18—C17—C16	120.8 (4)	H50—C50—C49	118 (3)
H18—C18—C13	119.998	C51—C50—C49	120.2 (4)
H18—C18—C17	119.997	H51—C51—C52	119.539
C13—C18—C17	120.0 (4)	H51—C51—C50	119.539
C24—C19—C20	117.7 (4)	C52—C51—C50	120.9 (4)
C24—C19—P2	121.8 (3)	H52—C52—C53	120.460
C20—C19—P2	120.4 (3)	H52—C52—C51	120.460
H20—C20—C21	119.976	C53—C52—C51	119.1 (4)
H20—C20—C19	119.976	H53—C53—C54	119.943
C21—C20—C19	120.0 (4)	H53—C53—C52	119.944
H21—C21—C22	119.544	C54—C53—C52	120.1 (4)
H21—C21—C20	119.544	H54—C54—C49	119.615
C22—C21—C20	120.9 (4)	H54—C54—C53	119.615
H22—C22—C23	120.058	C49—C54—C53	120.8 (4)
H22—C22—C21	120.057	H62—C62—Cl61 ⁱ	109.069
C23—C22—C21	119.9 (4)	H62—C62—Cl61	109.070
H23—C23—C24	119.833	Cl61 ⁱ —C62—Cl61	111.1 (6)
H23—C23—C22	119.833	H62—C62—H62 ⁱ	109.463

C24—C23—C22	120.3 (4)	Cl61 ⁱ —C62—H62 ⁱ	109.070
H24—C24—C23	119.469	Cl61—C62—H62 ⁱ	109.069

Symmetry code: (i) -x+2, y, -z+1/2.