metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Malcolm J. Todd and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.028 wR factor = 0.068 Data-to-parameter ratio = 21.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(cycloheptylaminium) hydrogenarsenate monohydrate

Received 15 April 2005

Accepted 22 April 2005

Online 7 May 2005

The title compound, $2C_7H_{16}N^+ \cdot HAsO_4^{2-} \cdot H_2O$, contains a network of cycloheptylaminium cations, hydrogenarsenate anions and water molecules. The crystal packing involves N— $H \cdot \cdot \cdot O$ [average $H \cdot \cdot \cdot O = 1.86$ Å, N $-H \cdot \cdot \cdot O = 172^{\circ}$ and N $\cdot \cdot \cdot O = 2.756$ (2) Å] and $O-H \cdot \cdot \cdot O$ [average $H \cdot \cdot \cdot O = 1.91$ Å, $O-H \cdot \cdot \cdot O = 168^{\circ}$ and $O \cdot \cdot \cdot O = 2.756$ (2) Å] hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of (protonated) amine phosphates (Demir *et al.*, 2003), phosphites (Harrison, 2003), selenites (Ritchie & Harrison, 2003) and arsenates (Lee & Harrison, 2003*a,b,c*; Wilkinson & Harrison, 2004).

The crystal structure of (I) contains two unique $C_7H_{15}N^+$ cycloheptylaminium cations, one unique $HAsO_4^{\ 2^-}$ hydrogen-

Figure 1

Asymmetric unit of (I), showing 50% displacement ellipsoids (arbitrary spheres for H atoms; C-bound H atoms have been omitted for clarity). Hydrogen bonds are indicated by dashed lines. Both disorder components are shown.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Detail of a hydrogen-bonded hydrogenarsenate/water chain in (I). Colour key: [HAsO₄]²⁻ tetrahedra: green; O atoms: pink; H atoms: grey. The $H \cdots O$ portions of the hydrogen bonds are highlighted in yellow. Symmetry labels as in Table 2.

arsenate anion and one unique water molecule. The geometric parameters for the organic species are unexceptional. One of the C atoms of the C8-containing cation is disordered over two adjacent sites (see Experimental). The conformation of the C atoms of the undisordered (C1-containing) ring is close to a twist-chair (the predicted lowest-energy conformation for a seven-membered ring; Hendrickson, 1967) with a pseudotwofold axis passing through C4 and the C1-C7 bond midpoint. The $HAsO_4^{2-}$ group in (I) shows its standard (Lee & Harrison, 2003) tetrahedral geometry [average As-O =1.691 (2) Å], with the protonated As-O4 vertex showing its expected lengthening relative to the other As-O bonds.

As well as electrostatic attractions, the component species in (I) interact by means of a network of N-H...O and O- $H \cdots O$ hydrogen bonds (Table 2). The HAsO₄²⁻ units and the water molecules (O5/H2/H3) are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2). Inversion symmetry generates linked pairs of HAsO₄²⁻ units (by way of two O4-H1···O3 bonds), which are in turn bridged by pairs of water molecules into a chain. The same chain motif occurs in bis(benzylaminium) hydrogenarsenate monohydrate (Lee & Harrison, 200c) but is different from that seen in propane-1,2-diaminium hydrogenarsenate monohydrate (Lee & Harrison, 2003a).

The organic species interact with the hydrogenarsenate/ water chains by way of $N-H \cdots O$ hydrogen bonds (Table 2). All six of the $-NH_3^+$ H atoms are involved in these links [average $H \cdots O = 1.86 \text{ Å}$, $N - H \cdots O = 172^{\circ}$ and $N \cdots O =$ 2.756 (2) Å]. Five of the acceptor O atoms are parts of $HAsO_4^{2-}$ species and one is part of a water molecule. This hydrogen-bonding scheme results in (101) hydrogenarsenate/ water/ammonium layers sandwiched between the cycloheptyl moieties (Fig. 3), which interact in turn by way of van der Waals forces.

Experimental

A 0.5 M cycloheptylamine solution (10 ml) in cyclohexane was layered on top of a 0.5 M aqueous H₃AsO₄ solution (10 ml) and covered to prevent solvent evaporation. A mass of block-like crystals

Figure 3

[010] projection of the unit cell packing for (I). Colour key as in Fig. 2; additionally, C atoms: blue; N atoms: orange. C-bound H atoms have been omitted for clarity.

of (I) grew at the interface of the solvent layers over the course of a few days.

Crystal data

	_
$2C_7H_{16}N^+ \cdot HAsO_4^{2-} \cdot H_2O$	$D_x = 1.366 \text{ Mg m}^{-3}$
$M_r = 386.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 4402
$a = 15.5003 (4) \text{\AA}$	reflections
b = 6.4005 (1) Å	$\theta = 2.9-27.5^{\circ}$
c = 20.1552 (5) Å	$\mu = 1.83 \text{ mm}^{-1}$
$\beta = 110.0396 \ (11)^{\circ}$	T = 120 (2) K
V = 1878.53 (7) Å ³	Block, colourless
Z = 4	$0.48 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.473, \ T_{\max} = 0.810$ 17 560 measured reflections 4294 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0232P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 1.7751P]
$wR(F^2) = 0.068$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4294 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
202 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL9
-	Extinction coefficient: 0.0027 (3)

3604 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.038$ $\theta_{\rm max} = 27.6^{\circ}$

 $h = -15 \rightarrow 20$

 $k = -8 \rightarrow 7$

 $l = -26 \rightarrow 25$

Table 1

Selected interatomic distances (Å).

As1-O2	1.6644 (13)	As1-O1	1.6789 (13)
As1-O3	1.6732 (13)	As1-O4	1.7466 (14)

Table 2			
Hydrogen-bond	geometry	(Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H1\cdots O3^{i}$	0.87	1.77	2.6250 (19)	169
O5-H2··· $O4$ ⁱⁱ	0.89	2.00	2.865 (2)	165
O5−H3···O1	0.83	1.96	2.779 (2)	171
$N1 - H4 \cdots O3^{ii}$	0.91	1.83	2.735 (2)	175
$N1-H5\cdots O5^{iii}$	0.91	1.90	2.805 (2)	173
$N1 - H6 \cdots O1$	0.91	1.87	2.762 (2)	166
$N2-H20\cdots O1$	0.91	1.91	2.794 (2)	165
$N2-H21\cdots O2^{iv}$	0.91	1.84	2.744 (2)	177
$N2-H22\cdots O2^{ii}$	0.91	1.79	2.697 (2)	173

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Atom C12 is disordered over two adjacent sites $[C12a\cdots C12b = 0.606 (5) \text{ Å}]$. The two components were refined isotropically, together with a population ratio of 0.662 (15):0.338 (15). The O-bound H atoms were found in difference maps and refined as riding in their asfound relative positions (Table 2). The H atoms bonded to C and N atoms were placed in idealized positions [C-H = 0.99 and 1.00 Å, and N-H = 0.91 Å] and refined as riding, allowing for free rotation of the rigid $-NH_3$ groups about the C-N bonds. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ was applied in all cases.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduc-

tion: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, 0907– 0909.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harrison, W. T. A. (2003). Acta Cryst. E59, 01267-01269.
- Hendrickson, D. J. (1967). J. Am. Chem. Soc. 89, 7047–7061.
- Lee, C. & Harrison, W. T. A. (2003*a*). Acta Cryst. E**59**, m739–m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m759–m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m355 m366. Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59. m1151–m1153.
- Nonjug (1000) COLLECT Nonjug PV Dolft. The Notherlands
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.
- Shape Software (1999). ATOMS. 525 Hidden Valley Road, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.

supporting information

Acta Cryst. (2005). E61, m1024-m1026 [https://doi.org/10.1107/S1600536805012912]

Bis(cycloheptylaminium) hydrogenarsenate monohydrate

Malcolm J. Todd and William T. A. Harrison

Bis(cycloheptylaminium) hydrogenarsenate monohydrate

Crystal data

 $2C_7H_{16}N^+ \cdot HAsO_4^{2-} \cdot H_2O$ $M_r = 386.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.5003 (4) Å b = 6.4005 (1) Å c = 20.1552 (5) Å $\beta = 110.0396$ (11)° V = 1878.53 (7) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.473, T_{\max} = 0.810$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.068$ S = 1.044294 reflections 202 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 824 $D_x = 1.366 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4402 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 1.83 \text{ mm}^{-1}$ T = 120 KBlock, colourless $0.48 \times 0.14 \times 0.12 \text{ mm}$

17560 measured reflections 4294 independent reflections 3604 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.6^\circ, \ \theta_{min} = 3.1^\circ$ $h = -15 \rightarrow 20$ $k = -8 \rightarrow 7$ $l = -26 \rightarrow 25$

Hydrogen site location: difmap (O-H) and geom (others) H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0232P)^2 + 1.7751P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.46 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0027 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and

goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) х v ZAs1 0.414424 (12) 0.04918 (3) 0.390334 (10) 0.00982(7)0.3104 (2) 01 0.41630 (9) 0.0144 (3) 0.38353(7)O2 0.34375 (9) -0.0597(2)0.31679 (7) 0.0159 (3) 03 0.52048 (9) -0.0513(2)0.41707(7) 0.0137 (3) 04 0.36561 (9) -0.0135(2)0.45409(7)0.0151 (3) H1 0.4078 -0.00450.4955 0.018* 05 0.31260 (10) 0.5555(2)0.44185 (8) 0.0207(3)0.025* H2 0.3219 0.6907 0.4373 0.4858 0.4200 0.025* H3 0.3389 N1 0.57607(11) 0.41955 (9) 0.5423(3)0.0154(4)H4 0.018* 0.5549 0.6759 0.4161 H5 0.6082 0.5124 0.4656 0.018* 0.018* H6 0.5278 0.4528 0.4031 C1 0.63747 (13) 0.5189(3)0.37659(11) 0.0152 (4) H7 0.6015 0.5565 0.3266 0.018* C2 0.66708 (15) 0.2909 (3) 0.37832 (13) 0.0236 (5) H8 0.2002 0.028* 0.6124 0.3685 Н9 0.7096 0.2571 0.4263 0.028* C3 0.32452 (13) 0.71461 (15) 0.2430(4)0.0250(5)H10 0.7024 0.0954 0.3096 0.030* H11 0.030* 0.6866 0.3313 0.2823 C4 0.81885 (15) 0.2788 (4) 0.35154 (14) 0.0291 (5) H12 0.8487 0.1568 0.3806 0.035* H13 0.8397 0.2834 0.3103 0.035* C5 0.85239(15) 0.4751 (4) 0.39497 (14) 0.0276(5)H14 0.9137 0.5109 0.3933 0.033* H15 0.8600 0.4437 0.4448 0.033* C6 0.79054 (15) 0.6666(3)0.37201 (12) 0.0220(5)H16 0.8288 0.7941 0.3852 0.026* H17 0.7616 0.3199 0.026* 0.6653 C7 0.71543 (14) 0.6770(3) 0.40484 (12) 0.0211 (5) H18 0.6887 0.8192 0.3973 0.025* H19 0.7441 0.025* 0.6561 0.4564 N2 0.33232 (11) 0.5513 (3) 0.26297 (8) 0.0134 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H20	0.3537	0.4533	0.2974	0.016*	
H21	0.2736	0.5194	0.2357	0.016*	
H22	0.3335	0.6791	0.2831	0.016*	
C8	0.39174 (13)	0.5549 (3)	0.21807 (10)	0.0137 (4)	
H23	0.4534	0.6088	0.2478	0.016*	
C9	0.40445 (17)	0.3331 (3)	0.19637 (13)	0.0275 (5)	
H24	0.3450	0.2814	0.1635	0.033*	
H25	0.4223	0.2428	0.2388	0.033*	
C10	0.47663 (16)	0.3127 (4)	0.16093 (12)	0.0284 (5)	
H26	0.5279	0.4092	0.1845	0.034*	
H27	0.5014	0.1687	0.1682	0.034*	
C11	0.4413 (2)	0.3594 (4)	0.08213 (13)	0.0374 (6)	
H28	0.4954	0.3698	0.0668	0.045*	
H29	0.4055	0.2364	0.0579	0.045*	
C12A	0.3841 (4)	0.5461 (7)	0.0554 (2)	0.0246 (12)*	0.662 (15)
H30A	0.3188	0.5066	0.0435	0.029*	0.662 (15)
H31A	0.3928	0.5919	0.0112	0.029*	0.662 (15)
C12B	0.4204 (9)	0.5906 (14)	0.0611 (4)	0.026 (3)*	0.338 (15)
H30B	0.4717	0.6443	0.0472	0.032*	0.338 (15)
H31B	0.3650	0.5922	0.0180	0.032*	0.338 (15)
C13	0.40528 (17)	0.7385 (4)	0.10873 (13)	0.0287 (5)	
H32	0.4718	0.7447	0.1362	0.034*	
H33	0.3872	0.8710	0.0822	0.034*	
C14	0.35107 (14)	0.7092 (3)	0.15809 (11)	0.0203 (5)	
H34	0.2884	0.6619	0.1299	0.024*	
H35	0.3452	0.8466	0.1787	0.024*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
As1	0.00959 (10)	0.00863 (10)	0.00972 (11)	0.00033 (8)	0.00137 (7)	-0.00013 (8)
01	0.0172 (7)	0.0093 (7)	0.0159 (7)	-0.0002 (6)	0.0046 (6)	0.0008 (6)
O2	0.0145 (7)	0.0156 (7)	0.0134 (7)	-0.0003 (6)	-0.0005 (6)	-0.0060 (6)
O3	0.0108 (6)	0.0147 (7)	0.0146 (7)	0.0037 (6)	0.0029 (5)	0.0001 (6)
O4	0.0121 (6)	0.0197 (8)	0.0121 (7)	-0.0018 (6)	0.0022 (5)	0.0014 (6)
O5	0.0266 (8)	0.0158 (7)	0.0227 (8)	-0.0007 (6)	0.0124 (7)	-0.0009 (6)
N1	0.0133 (8)	0.0136 (8)	0.0186 (9)	-0.0003 (7)	0.0047 (7)	-0.0008 (7)
C1	0.0134 (9)	0.0166 (10)	0.0157 (10)	0.0008 (8)	0.0051 (8)	0.0005 (8)
C2	0.0241 (11)	0.0181 (11)	0.0335 (13)	-0.0022 (9)	0.0159 (10)	-0.0024 (10)
C3	0.0254 (11)	0.0218 (12)	0.0314 (13)	-0.0009 (10)	0.0142 (10)	-0.0076 (10)
C4	0.0254 (12)	0.0258 (13)	0.0388 (15)	0.0053 (10)	0.0147 (11)	-0.0021 (11)
C5	0.0150 (10)	0.0273 (12)	0.0416 (15)	-0.0014 (9)	0.0110 (10)	0.0024 (11)
C6	0.0231 (11)	0.0164 (11)	0.0305 (13)	-0.0030 (9)	0.0145 (10)	0.0028 (9)
C7	0.0203 (10)	0.0196 (11)	0.0262 (12)	-0.0039 (9)	0.0116 (9)	-0.0021 (9)
N2	0.0149 (8)	0.0114 (8)	0.0118 (8)	0.0001 (7)	0.0018 (7)	0.0001 (7)
C8	0.0124 (9)	0.0143 (10)	0.0134 (10)	-0.0007 (8)	0.0030 (8)	-0.0008 (8)
С9	0.0410 (14)	0.0174 (12)	0.0298 (13)	0.0060 (10)	0.0194 (11)	0.0021 (10)
C10	0.0313 (13)	0.0297 (13)	0.0243 (13)	0.0158 (10)	0.0099 (10)	0.0021 (10)

supporting information

C11	0.0540 (17)	0.0346 (14)	0.0255 (14)	0.0073 (13)	0.0161 (12)	-0.0008 (12)
C13	0.0346 (13)	0.0261 (12)	0.0317 (14)	0.0064 (11)	0.0195 (11)	0.0107 (11)
C14	0.0182 (10)	0.0222 (11)	0.0208 (11)	0.0013 (9)	0.0071 (9)	0.0058 (9)

Geometric	parameters	(Å,	9	
-----------	------------	-----	---	--

As1—O2	1.6644 (13)	С7—Н19	0.9900
As1—O3	1.6732 (13)	N2—C8	1.496 (3)
As1—O1	1.6789 (13)	N2—H20	0.9100
As104	1.7466 (14)	N2—H21	0.9100
O4—H1	0.8680	N2—H22	0.9100
O5—H2	0.8874	C8—C9	1.518 (3)
О5—Н3	0.8255	C8—C14	1.521 (3)
N1—C1	1.498 (3)	C8—H23	1.0000
N1—H4	0.9100	C9—C10	1.525 (3)
N1—H5	0.9100	C9—H24	0.9900
N1—H6	0.9100	С9—Н25	0.9900
C1—C2	1.526 (3)	C10—C11	1.522 (3)
C1—C7	1.529 (3)	C10—H26	0.9900
С1—Н7	1.0000	C10—H27	0.9900
С2—С3	1.536 (3)	C11—C12A	1.476 (4)
С2—Н8	0.9900	C11—C12B	1.543 (8)
С2—Н9	0.9900	C11—H28	0.9900
С3—С4	1.535 (3)	C11—H29	0.9900
C3—H10	0.9900	C12A—C13	1.593 (5)
C3—H11	0.9900	C12A—H30A	0.9900
C4—C5	1.518 (3)	C12A—H31A	0.9900
C4—H12	0.9900	C12B—C13	1.424 (8)
C4—H13	0.9900	C12B—H30B	0.9900
C5—C6	1.527 (3)	C12B—H31B	0.9900
C5—H14	0.9900	C13—C14	1.518 (3)
С5—Н15	0.9900	C13—H32	0.9900
С6—С7	1.525 (3)	С13—Н33	0.9900
C6—H16	0.9900	C14—H34	0.9900
С6—Н17	0.9900	C14—H35	0.9900
С7—Н18	0.9900		
O2—As1—O3	113.58 (7)	C8—N2—H22	109.5
O2—As1—O1	111.64 (7)	H20—N2—H22	109.5
O3—As1—O1	111.51 (7)	H21—N2—H22	109.5
O2—As1—O4	103.90 (7)	N2C8C9	109.12 (16)
O3—As1—O4	107.47 (7)	N2-C8-C14	108.51 (15)
O1—As1—O4	108.23 (7)	C9—C8—C14	115.96 (18)
As1-04-H1	108.6	N2—C8—H23	107.7
Н2—О5—Н3	110.2	C9—C8—H23	107.7
C1—N1—H4	109.5	C14—C8—H23	107.7
C1—N1—H5	109.5	C8—C9—C10	113.79 (19)
H4—N1—H5	109.5	C8—C9—H24	108.8

C1—N1—H6	109.5	С10—С9—Н24	108.8
H4—N1—H6	109.5	С8—С9—Н25	108.8
H5—N1—H6	109.5	С10—С9—Н25	108.8
N1—C1—C2	109.17 (16)	H24—C9—H25	107.7
N1—C1—C7	107.23 (16)	C11—C10—C9	114.4 (2)
C2—C1—C7	115.55 (17)	C11—C10—H26	108.7
N1—C1—H7	108.2	С9—С10—Н26	108.7
С2—С1—Н7	108.2	С11—С10—Н27	108.7
C7—C1—H7	108.2	C9—C10—H27	108.7
C1 - C2 - C3	112 84 (19)	H26-C10-H27	107.6
C1 - C2 - H8	109.0	$C_{12} = C_{11} = C_{10}$	107.0 119.8(2)
C_{3} C_{2} H_{8}	109.0	C12A - C11 - C12B	23.0(3)
$C_1 = C_2 = H_0$	109.0	C_{12} C_{11} C_{12} C	23.0(3)
$C_1 = C_2 = H_0$	109.0	C_{10} C_{11} C_{12} C	110.2(3)
$C_{3} - C_{2} - H_{3}$	109.0	$C_{12}A - C_{11} - H_{28}$	107.4
H8 - C2 - H9	107.8	C10 - C11 - H28	107.4
C4 - C3 - C2	114.9 (2)	C12B—C11—H28	88.5
C4—C3—H10	108.5	C12A—C11—H29	107.4
C2—C3—H10	108.5	C10—C11—H29	107.4
C4—C3—H11	108.5	C12B—C11—H29	126.7
C2—C3—H11	108.5	H28—C11—H29	106.9
H10—C3—H11	107.5	C11—C12A—C13	114.9 (3)
C5—C4—C3	116.05 (19)	C11—C12A—H30A	108.6
C5—C4—H12	108.3	C13—C12A—H30A	108.6
C3—C4—H12	108.3	C11—C12A—H31A	108.6
C5—C4—H13	108.3	C13—C12A—H31A	108.6
C3—C4—H13	108.3	H30A—C12A—H31A	107.5
H12—C4—H13	107.4	C13—C12B—C11	121.3 (5)
C4—C5—C6	115.7 (2)	C13—C12B—H30B	107.1
C4—C5—H14	108.3	C11—C12B—H30B	107.3
C6—C5—H14	108.3	C13—C12B—H31B	106.8
C4—C5—H15	108.3	C11—C12B—H31B	106.8
C6—C5—H15	108.3	H30B—C12B—H31B	106.7
H14—C5—H15	107.4	C12B—C13—C14	128.0 (5)
C7—C6—C5	113.38 (19)	C12B— $C13$ — $C12A$	22.3 (4)
C7—C6—H16	108.9	C14-C13-C12A	108.3(3)
C5-C6-H16	108.9	C12B-C13-H32	91 3
C7—C6—H17	108.9	C12D = C13 = H32	110.0
C_{5} C_{6} H_{17}	108.9	$C_{12} = C_{13} = H_{32}$	110.0
H16 C6 H17	107.7	C12R C13 H33	106.6
C_{6} C_{7} C_{1}	115 67 (18)	$C_{12} = C_{13} = 1133$	110.0
$C_{0} - C_{1} - C_{1}$	108 4	$C_{14} = C_{13} = H_{133}$	110.0
$C_0 - C_7 - H_{18}$	108.4	12A - 13 - 135	10.0
$C_1 = C_7 = H_{10}$	100.4	n_{32} n_{32} n_{33} n	100.4
$C_1 = C_7 = U_{10}$	100.4	$C_{13} = C_{14} = C_{14}$	113.43 (18) 109.4
	100.4	$C_{13} = C_{14} = H_{24}$	100.4
$\Pi 10 - U / - \Pi 19$	107.4	12 - 14 - 1134	108.4
$C_0 = N_2 = H_2 U$	109.5	$C_{13} = C_{14} = H_{25}$	108.4
$V_{0} = N_{1} = M_{2}$	109.5	C8-C14-H35	108.4
H20—N2—H21	109.5	H34—C14—H35	107.5

N1-C1-C2-C3 $C7-C1-C2-C3-C4$ $C2-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C7$ $C5-C6-C7-C1$ $N1-C1-C7-C6$ $N2-C8-C9-C10$ $C14-C8-C9-C10$ $C8-C9-C10-C11$	168.86 (17) -70.2 (2) 88.2 (2) -42.1 (3) -36.1 (3) 86.7 (3) -71.9 (3) 175.18 (17) 53.2 (3) -170.24 (17) 66.9 (3) -84.1 (3)	C9-C10-C11-C12B C10-C11-C12A-C13 C12B-C11-C12A-C13 C12A-C11-C12B-C13 C10-C11-C12B-C13 C11-C12B-C13-C14 C11-C12B-C13-C14 C11-C12A-C13-C12B C11-C12A-C13-C14 C12B-C13-C14-C8 C12A-C13-C14-C8 N2-C8-C14-C13	71.9 (6) $30.6 (6)$ $-56.9 (9)$ $84.6 (12)$ $-20.2 (12)$ $-41.0 (12)$ $-72.1 (12)$ $69.5 (9)$ $-85.1 (4)$ $66.8 (6)$ $78.8 (3)$ $177.73 (18)$
C8—C9—C10—C11	-84.1 (3)	N2-C8-C14-C13	177.73 (18)
C9—C10—C11—C12A	46.1 (4)	C9-C8-C14-C13	-59.1 (3)

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
O4—H1···O3 ⁱ	0.87	1.77	2.6250 (19)	169
O5—H2…O4 ⁱⁱ	0.89	2.00	2.865 (2)	165
O5—H3…O1	0.83	1.96	2.779 (2)	171
N1—H4···O3 ⁱⁱ	0.91	1.83	2.735 (2)	175
N1—H5···O5 ⁱⁱⁱ	0.91	1.90	2.805 (2)	173
N1—H6…O1	0.91	1.87	2.762 (2)	166
N2—H20…O1	0.91	1.91	2.794 (2)	165
N2—H21···O2 ^{iv}	0.91	1.84	2.744 (2)	177
N2—H22···O2 ⁱⁱ	0.91	1.79	2.697 (2)	173

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1/2, y+1/2, -z+1/2.