organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,2-diaminium selenite monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 15 April 2005; accepted 22 April 2005; online 7 May 2005)

The title compound, C3H12N22+·SeO32−·H2O, contains a network of propane-1,2-diaminium (C3H12N22+) cations, selenite (SeO32−) anions and water mol­ecules. The crystal packing involves N—H⋯O [average H⋯O = 1.89 Å, N—H⋯O = 165° and N⋯O = 2.777 (3) Å] and O—H⋯O hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I)[link], was prepared as part of our ongoing studies of hydrogen-bonding inter­actions in the crystal structures of (protonated) amine phosphates (Demir et al., 2003[Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907-o909.]), phosphites (Harrison, 2003[Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.]), selenites (Ritchie & Harrison, 2003[Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.]) and arsenates (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.],b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.],c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]; Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]).

[Scheme 1]

The asymmetric unit of (I)[link] contains one C3H12N22+ cation, one SeO22− anion and a water mol­ecule (Fig. 1[link]). The geometric parameters for the organic cation are unexceptional (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.]). This species is chiral (C1 has S configuration in the selected asymmetric unit), but crystal symmetry generates a 50:50 mix of enantiomers, consistent with the racemic starting material. The selenite group in (I)[link] shows its standard (Lee & Harrison, 2003[Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.]) pyramidal geometry (Table 1[link]) [average Se—O = 1.687 (2) Å], with the Se atom displaced from the plane of its three attached O atoms by 0.7213 (12) Å.

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of a network of N—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]). The selenite anions and water mol­ecules are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2[link]). The organic species inter­acts with the selenite/water chains by way of N—H⋯O hydrogen bonds (Table 2[link]). All six of the –NH3+ H atoms are involved in these links [mean H⋯O = 1.89 Å, N—H⋯O = 165° and N⋯O = 2.777 (3) Å]. These inter­actions result in (101) selenite/water/aminium layers sandwiched between the carbon backbones of the organic groups (Fig. 3[link]), which themselves inter­act by way of van der Waals forces.

Propane-1,2-diaminium hydrogenarsenate monohydrate, C3H12N22+·HAsO42−·H2O (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.]), has an equivalent stoichiometry to (I)[link]. As might be expected, where the oxo anion has hydrogen-bonding capability (i.e. as As—OH⋯O links), a quite different overall structure arises. An inter­esting difference also arises for the organic cation; in (I)[link], the –NH3+ and –CH3 groups are trans about their linking C—C bond (Table 1[link]), whereas in the hydrogenarsenate, they are gauche [C—C—C—N = −54.09 (18)°].

[Figure 1]
Figure 1
Asymmetric unit of (I)[link], showing 50% displacement ellipsoids (arbitrary spheres for H atoms). Hydrogen bonds are indicated by dashed lines.
[Figure 2]
Figure 2
Detail of a hydrogen-bonded selenite/water chain in (I)[link]. Symmetry codes are as in Table 2[link] [additionally: (v) x, 1 + y, z]. Hydrogen bonds are indicated by dashed lines.
[Figure 3]
Figure 3
[010] projection of the packing for (I)[link]. C-bound H atoms have been omitted for clarity and hydrogen bonds are indicated by dashed lines.

Experimental

An aqueous 0.5 M propane-1,2-diamine solution (10 ml) was added to aqueous 0.5 M H2SeO3 solution (10 ml, dissolved SeO2) to result in a clear solution. A mass of colourless platy crystals of (I)[link], with a pale-pink tinge arising from a surface coating, grew as the water evaporated over the course of a few days.

Crystal data
  • C3H12N22+·SeO32−·H2O

  • Mr = 221.12

  • Monoclinic, P 2/n

  • a = 11.5494 (7) Å

  • b = 6.1399 (4) Å

  • c = 11.6601 (6) Å

  • β = 92.213 (3)°

  • V = 826.23 (8) Å3

  • Z = 4

  • Dx = 1.778 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1941 reflections

  • θ = 2.9–27.5°

  • μ = 4.51 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.12 × 0.10 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.613, Tmax = 0.915

  • 8108 measured reflections

  • 1882 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.5°

  • h = −12 → 15

  • k = −7 → 7

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.068

  • S = 1.07

  • 1882 reflections

  • 95 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0274P)2 + 0.5437P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.51 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0026 (7)

Table 1
Selected geometric parameters (Å, °)[link]

Se1—O1 1.673 (2)
Se1—O3 1.6826 (19)
Se1—O2 1.7052 (18)
N1—C1—C2—N2 55.2 (3)
C3—C1—C2—N2 176.9 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.91 1.88 2.779 (3) 171
N1—H2⋯O1ii 0.91 1.81 2.701 (3) 165
N1—H3⋯O2 0.91 2.00 2.835 (3) 152
N2—H4⋯O4iii 0.91 1.91 2.802 (3) 165
N2—H5⋯O3 0.91 1.87 2.777 (3) 173
N2—H6⋯O2ii 0.91 1.88 2.766 (3) 164
O4—H13⋯O3 0.88 1.96 2.840 (3) 178
O4—H14⋯O1iv 0.76 2.04 2.747 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) [-x+{\script{3\over 2}}, y+1, -z+{\script{1\over 2}}]; (iv) x, y-1, z.

The non-standard P2/n setting of the space group was chosen in preference to P2/c to avoid a unit cell with a very obtuse β angle of 133.6°. The water H atoms were found in a difference map and refined as riding in their as-found relative positions (Table 2[link]). H atoms bonded to C and N atoms were placed in idealized positions (C—H = 0.98–1.00 Å and N—H = 0.91 Å) and refined as riding, allowing for free rotation of the rigid –XH3 (X = C3, N1 and N2) groups. The constraint Uiso(H) = 1.2Ueq(carrier) or Uiso(H) = 1.2Ueq(meth­yl carrier) was applied as appropriate.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. App. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Propane-1,2-diaminium selenite monohydrate top
Crystal data top
C3H12N22+·SeO32·H2OF(000) = 448
Mr = 221.12Dx = 1.778 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1941 reflections
a = 11.5494 (7) Åθ = 2.9–27.5°
b = 6.1399 (4) ŵ = 4.51 mm1
c = 11.6601 (6) ÅT = 120 K
β = 92.213 (3)°Plate, colourless
V = 826.23 (8) Å30.12 × 0.10 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1882 independent reflections
Radiation source: fine-focus sealed tube1617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and φ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1215
Tmin = 0.613, Tmax = 0.915k = 77
8108 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (C-N and N-H)
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0274P)2 + 0.5437P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1882 reflectionsΔρmax = 0.98 e Å3
95 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.44873 (2)0.81651 (4)0.21940 (2)0.01546 (12)
O10.43374 (17)1.0875 (3)0.22349 (16)0.0253 (5)
O20.42321 (16)0.7560 (3)0.07795 (16)0.0204 (4)
O30.59257 (16)0.7750 (3)0.23366 (16)0.0209 (4)
C10.7531 (2)0.6926 (4)0.0105 (2)0.0180 (6)
H70.75780.62120.08760.022*
C20.7916 (2)0.9266 (4)0.0239 (2)0.0169 (5)
H80.87080.92990.05950.020*
H90.79470.99430.05290.020*
C30.8323 (2)0.5718 (5)0.0684 (2)0.0240 (6)
H100.80720.41980.07550.036*
H110.91200.57690.03640.036*
H120.82900.64070.14430.036*
N10.63165 (19)0.6781 (3)0.03598 (19)0.0169 (5)
H10.61580.53830.05730.020*
H20.62250.76710.09810.020*
H30.58240.71990.01890.020*
N20.71339 (19)1.0567 (4)0.09542 (19)0.0180 (5)
H40.75541.15950.13490.022*
H50.67840.96730.14580.022*
H60.65861.12290.04940.022*
O40.62226 (18)0.3308 (3)0.29602 (19)0.0283 (5)
H130.61290.46660.27460.034*
H140.56330.27710.29230.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01747 (18)0.01530 (16)0.01357 (16)0.00069 (11)0.00008 (11)0.00103 (10)
O10.0291 (11)0.0169 (10)0.0293 (11)0.0055 (9)0.0071 (9)0.0067 (9)
O20.0239 (11)0.0173 (9)0.0194 (10)0.0011 (8)0.0077 (8)0.0037 (8)
O30.0166 (10)0.0209 (10)0.0248 (10)0.0008 (8)0.0037 (8)0.0036 (8)
C10.0180 (14)0.0158 (13)0.0203 (14)0.0017 (11)0.0001 (11)0.0008 (11)
C20.0144 (13)0.0173 (13)0.0191 (13)0.0005 (11)0.0008 (10)0.0007 (11)
C30.0198 (15)0.0236 (15)0.0288 (15)0.0048 (12)0.0049 (12)0.0005 (13)
N10.0175 (12)0.0137 (11)0.0195 (12)0.0007 (9)0.0002 (9)0.0049 (9)
N20.0178 (12)0.0142 (11)0.0216 (11)0.0006 (9)0.0060 (9)0.0000 (9)
O40.0199 (11)0.0156 (10)0.0482 (13)0.0024 (8)0.0131 (10)0.0040 (9)
Geometric parameters (Å, º) top
Se1—O11.673 (2)C3—H110.9800
Se1—O31.6826 (19)C3—H120.9800
Se1—O21.7052 (18)N1—H10.9100
C1—N11.487 (3)N1—H20.9100
C1—C21.510 (4)N1—H30.9100
C1—C31.516 (4)N2—H40.9100
C1—H71.0000N2—H50.9100
C2—N21.485 (3)N2—H60.9100
C2—H80.9900O4—H130.8761
C2—H90.9900O4—H140.7566
C3—H100.9800
O1—Se1—O3104.52 (9)H10—C3—H11109.5
O1—Se1—O2103.29 (9)C1—C3—H12109.5
O3—Se1—O2101.28 (9)H10—C3—H12109.5
N1—C1—C2111.4 (2)H11—C3—H12109.5
N1—C1—C3109.4 (2)C1—N1—H1109.5
C2—C1—C3110.3 (2)C1—N1—H2109.5
N1—C1—H7108.6H1—N1—H2109.5
C2—C1—H7108.6C1—N1—H3109.5
C3—C1—H7108.6H1—N1—H3109.5
N2—C2—C1112.8 (2)H2—N1—H3109.5
N2—C2—H8109.0C2—N2—H4109.5
C1—C2—H8109.0C2—N2—H5109.5
N2—C2—H9109.0H4—N2—H5109.5
C1—C2—H9109.0C2—N2—H6109.5
H8—C2—H9107.8H4—N2—H6109.5
C1—C3—H10109.5H5—N2—H6109.5
C1—C3—H11109.5H13—O4—H14107.3
N1—C1—C2—N255.2 (3)C3—C1—C2—N2176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.882.779 (3)171
N1—H2···O1ii0.911.812.701 (3)165
N1—H3···O20.912.002.835 (3)152
N2—H4···O4iii0.911.912.802 (3)165
N2—H5···O30.911.872.777 (3)173
N2—H6···O2ii0.911.882.766 (3)164
O4—H13···O30.881.962.840 (3)178
O4—H14···O1iv0.762.042.747 (3)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x+3/2, y+1, z+1/2; (iv) x, y1, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907–o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. App. Cryst. 30, 565.  CrossRef Google Scholar
First citationHarrison, W. T. A. (2003). Acta Cryst. E59, o1267–o1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739–m741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959–m960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151–m1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationRitchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296–o1298.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds