Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

R. Alan Howie^a* and Solange M. S. V. Wardell^b

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^bFundação Oswaldo Cruz, Far-Manguinhos, Rua Sizenando Nabuco 100, Manguinhos, 21041250 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: r.a.howie@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.055 wR factor = 0.140 Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Anthracen-9-ylmethyl)dimethylamine at 120 K

In the structure of the title compound, $C_{17}H_{17}N$, the two molecules in the asymmetric unit are confined to distinct layers, one for each type of molecule. The layers differ in the orientation, relative to the edges of the unit cell, of the molecules within them.

Comment

The determination of the structure of the title compound, (I), reported here, follows on from the recent report of the structure of (anthracen-9-ylmethyl)diethylamine, (II) (Howie et al., 2005). Compound (I) was unexpectedly isolated from a reaction mixture of 9-(chloromethyl)anthracene and 1,4,8,11tetraazacyclotetradecane (cyclam) in N,N-dimethylformamide (DMF). Clearly, DMF had acted as a dimethylaminating reagent in the preparation of (I). There are scattered reports in the literature of DMF acting as a dimethylaminating agent in reactions with organic halides, activated for nucleophilic attack. Some examples include reactions with haloheteroarenes, such as chloropyridazines (Lee, Yoon & Kim, 2000) and bromopyridines (Watanabe et al., 1980), acyl chlorides (Lee, Park & Yoon, 2000; Knunyants et al., 1966), and (chloromethyl)arenes (Min'kov & Kravtsov, 1976). Subsequently, (I) was synthesized successfully by the reaction of 9-(chloromethyl)anthracene with excess Me₂NH in CH₂Cl₂ with a procedure similar to that used for (II) (Howie et al., 2005), except that triethylamine was not added to the reaction mixture. The title compound has also been reported as the product of the Leuckart reaction between 9-anthracenecarboxaldehyde and DMF in 90% formic acid (Marcus & Fitzpatrick, 1959).

The asymmetric unit of (I) contains two molecules, which have been labelled in an identical manner (Fig. 1) and are distinguished by suffixes A and B. Leaving aside the difference in methyl and ethyl N-substituents, the molecular geometries of the molecules A and B of (I) and the molecule of (II) are, as would be expected, virtually identical. For the molecules of

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 26 April 2005 Accepted 3 May 2005

Online 14 May 2005

Figure 1

Molecule A of (I), showing the labelling scheme used for both molecules. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small circles of arbitrary radii.

Figure 2

A view of the unit cell contents of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms involved in C-H $\cdot \cdot \pi$ interactions (dashed lines) are shown as small circles of arbitrary radii. Labels indicate molecule type. [Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) $\begin{array}{l} -x, \frac{1}{2} + y, \frac{1}{2} - z; \text{ (iii) } -x, 1 - y, 1 - z; \text{ (iv) } 1 - x, 1 - y, 1 - z; \text{ (v) } x, \frac{1}{2} - y, \\ \frac{1}{2} + z; \text{ (vi) } 1 - x, \frac{1}{2} + y, \frac{1}{2} - z; \text{ (vii) } 1 + x, y, z; \text{ (viii) } 1 + x, \frac{1}{2} - y, \frac{1}{2} + z. \end{array}$

(I), the C-N distances and the C-N-C angles lie in the ranges 1.454 (3)–1.470 (2) Å and 109.43 (14)–111.58 (14) $^{\circ}$, respectively; the C–C bond lengths and internal angles of the essentially planar anthracene ring systems (r.m.s. displacements for the atoms C1-C14 defining them of 0.0263 and (0.0376 Å) are in the ranges (1.352 (3)-1.446 (2) Å) and 116.91 (15)–123.56 (16)°, respectively, and, finally, the C1– C15 bond length is 1.512 (2) Å in both molecules. It is noticeable that the pairs of values, one from each of the molecules in the bimolecular asymmetric unit from which the limiting values in the ranges given above are selected, always have the same designations, e.g. C5-C6 is the shortest bond in the anthracene ring system for both molecules. This fact provides a crude indication of the close similarity of the molecular geometries, as well as confirming the conformity of the labelling scheme as applied to the two molecules. As shown by the torsion angles given in Table 1, the representative molecules A and B of the asymmetric unit of (I) are enantiomers. This arises purely from the choice of molecules because the centrosymmetric space group requires that the structure be completely racemic. In (I), the displacements of the atoms of the methylamine substituent from the leastsquares plane defined by C1-C14, with the values for molecule B in square brackets, are 0.033(2) [0.024(2)], 2.387(2) [2.383 (2)], 1.201 (4) [1.067 (3)] and 1.322 (2) Å [1.257 (2) Å], respectively for the atoms in the order C15, C16, C17 and N1, and are very similar to the displacements of the corresponding atoms in the molecule of (II). The anthracene moieties of molecules A and B of (I), as is the case for the molecule of (II), are in fact very slightly U shaped, as shown by the dihedral angles between the outer and inner rings, which are in the range 1.38 (10)–2.30 (10)°. Molecules A and B of (I) are found in separate layers parallel to (100), which differ (Fig. 2) in the orientation of the molecules within the unit cell. As a consequence, the type A and type B molecules differ slightly in the $C-H \cdots \pi$ intermolecular interactions (see later) in which they participate. For the choice of origin used in the refinement of the structure, the layers of type A molecules are centred on x =0 and 1 and alternate with layers of type B molecules at $x = \frac{1}{2}$. Contacts between the molecules take the form of the C-H··· π interactions given in Table 2 and occur entirely within the layers, as shown for type A molecules in Fig. 3. The connectivity within the layers in (I) is identical in form to that observed in (II). However, in comparing (I) and (II), the cell edges b and c are interchanged in length, as is the orientation of the molecules and therefore of the intermolecular connectivity within the layers relative to the symmetry elements of the space group $P2_1/c$, which is common to both structures. Moreover, in (II), neighbouring layers are related by cell translation in the direction of a, whereas in (I) they are not, and the cell edge a is therefore doubled in (I) compared with (II). Overall, the structures of (I) and (II) are closely related but the compounds are not isostructural.

Experimental

A solution of 9-chloromethylanthracene and cyclam (each 2 mmol) in dry DMF (20 ml) was refluxed for 6 h. Much of the solvent was then removed under high vacuum and the residue was chromatographed on a silica column, using as eluant hexane/ethyl acetate (ethyl acetate increasing from 5 to 100%). The pure title compound was obtained from intermediate fractions and was recrystallized from EtOH (m. p. 348-350 K).

C ₁₇ H ₁₇ N	$D_x = 1.175 \text{ Mg m}^{-3}$
$M_r = 235.32$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 28 370
a = 19.6924 (4) Å	reflections
b = 6.2383 (1) Å	$\theta = 2.9-27.5^{\circ}$
c = 23.4415 (7) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 112.4743 \ (10)^{\circ}$	T = 120 (2) K
$V = 2661.01 (11) \text{ Å}^3$	Plate, pale yellow
Z = 8	$0.36 \times 0.16 \times 0.08 \text{ mm}$

organic papers

Data collection

Enraf–Nonius KappaCCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995, 1997) $T_{min} = 0.936$, $T_{max} = 0.995$ 28 370 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.140$ S = 1.03 6034 reflections 329 parameters H-atom parameters constrained

Table 1

Selected torsion angles ($^{\circ}$).

C2A-C1A-C15A-N1A	71.54 (19)
C2B-C1B-C15B-N1B	-68.23 (19)
C14A-C1A-C15A-N1A	-109.24 (17)
C14B-C1B-C15B-N1B	114.10 (16)
C1A-C15A-N1A-C16A	65.22 (19)
C1B-C15B-N1B-C16B	-66.82 (18)
C1A-C15A-N1A-C17A	-172.65 (15)
C1B-C15B-N1B-C17B	170.50 (14)

6034 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.062P)^2]$

+ 0.4189P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.085$

 $\theta_{\max} = 27.5^{\circ}$ $h = -23 \rightarrow 25$

 $k = -7 \rightarrow 8$

 $l = -30 \rightarrow 30$

3938 reflections with $I > 2\sigma(I)$

Table 2

Geometry (Å, °) of the C–H··· π contacts in (I).

$C-H\cdots Cg^{a}$	$H \cdot \cdot \cdot Cg$	$\mathbf{H}^{b}_{\mathrm{perp}}$	γ^{c}	$C-H\cdots Cg$	$C \cdots C_{\xi}$
$C5B-H5B\cdots Cg6^{i}$	3.114	3.087	8	125	3.745
$C6A - H6A \cdots Cg5^{ii}$	2.726	2.645	14	139	3.501
$C6B - H6B \cdot \cdot \cdot Cg2^{i}$	2.537	2.480	12	138	3.306
$C8A - H8A \cdots Cg1^{ii}$	2.879	2.819	12	144	3.688
$C8B - H8B \cdot \cdot \cdot Cg4^{i}$	2.858	2.858	1	148	3.701
$C10A - H10A \cdots Cg3^{ii}$	2.933	2.884	10	147	3.763
$C16A - H16A \cdots Cg5^{iii}$	3.176	2.850	26	128	3.861
$C16B - H16D \cdots Cg6^{iv}$	2.734	2.687	11	137	3.516

Notes: (a) Cgn, n = 1-6, are the centroids of the rings C1A/C2A/C7A-C9A/C14A, C1B/C2B/C7B-C9B/C14B, C2A-C7A, C2B-C7B, C9A-C14A and C9B-C14B, respectively; (b) H_{perp} is the perpendicular distance of the H atom from the mean plane of the ring; (c) γ is the angle at the H atom between $H \cdots Cg$ and H_{perp} . Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) -x, 1/2 + y, 1/2 - z; (iii) -x, 1 - y, 1 - z.

In the final stages of refinement, H atoms were placed in calculated positions, with C-H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H atoms, respectively, and refined with a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C)$ otherwise. The rotational orientation of the methyl groups was also refined.

A layer of type A molecules of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms involved in $C-H\cdots\pi$ interactions (dashed lines) are shown as small circles of arbitrary radii. Selected atoms are labelled. [Symmetry codes: (ii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) 1 - x, 1 - y, 1 - z; (v) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ix) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (xi) $x, \frac{3}{2} - y, z - \frac{1}{2}$; (xi) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (xii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$.]

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

The use of the EPSRC X-ray crystallographic service at Southampton and the valuable assistance of the staff there is gratefully acknowledged.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Howie, R. A., Kindness, A., McKay, M. G. & Maguire, G. E. M. (2005). Acta Cryst. E61, 052–054.
- Knunyants, Yu. A., Cheburkov, Yu. A. & Aronov, Yu. E. (1966). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1038–1047.

Lee, W. S., Park, K. H. & Yoon, Y. J. (2000). Synth. Commun. **30**, 4241–4245. Lee, W. S., Yoon, Y. J. & Kim, S. K. (2000). J. Heterocycl. Chem. **37**, 1591–1595.

Marcus, E. & Fitzpatrick, J. T. (1959). J. Org. Chem. pp. 1031-1032.

Min'kov, V. A. & Kravtsov, V. S. (1976). Vopr. Khim. Khim. Tekhnol. 43, 1213– 126.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watanabe, T., Tanaka, Y., Sekiya, K., Akita, Y. & Ohta A. (1980). Synthesis, pp. 39-43.

Acta Cryst. (2005). E61, o1686–o1688 [https://doi.org/10.1107/S1600536805014200]

(Anthracen-9-ylmethyl)dimethylamine at 120 K

R. Alan Howie and Solange M. S. V. Wardell

(Anthracen-9-ylmethyl)dimethylamine

Crystal data

C₁₇H₁₇N $M_r = 235.32$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.6924 (4) Å b = 6.2383 (1) Å c = 23.4415 (7) Å $\beta = 112.4743$ (10)° V = 2661.01 (11) Å³ Z = 8

Data collection

Enraf–Nonius KappaCCD area-detector diffractometer
Radiation source: Enraf–Nonius FR591 rotating anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm⁻¹
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995, 1997)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.140$ S = 1.036034 reflections 329 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1008 $D_x = 1.175 \text{ Mg m}^{-3}$ Melting point = 348–350 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 28370 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 120 KPlate, pale yellow $0.36 \times 0.16 \times 0.08 \text{ mm}$

 $T_{\min} = 0.936, T_{\max} = 0.995$ 28370 measured reflections
6034 independent reflections
3938 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.085$ $\theta_{\text{max}} = 27.5^{\circ}, \theta_{\text{min}} = 3.2^{\circ}$ $h = -23 \rightarrow 25$ $k = -7 \rightarrow 8$ $l = -30 \rightarrow 30$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 0.4189P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles: correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) -0.6341(40)x + 3.3132(23)v + 18.6289(52)z = 7.9481(8)* 0.0299 (0.0014) C1A * 0.0255 (0.0015) C2A * 0.0098 (0.0015) C3A * -0.0317 (0.0016) C4A * -0.0446 (0.0016) C5A * -0.0060 (0.0015) C6A * 0.0213 (0.0015) C7A * 0.0251 (0.0015) C8A * 0.0283 (0.0016) C9A * 0.0121 (0.0015) C10A * -0.0325 (0.0016) C11A * -0.0386 (0.0016) C12A * -0.0134 (0.0015) C13A * 0.0147 (0.0015) C14A 0.0330 (0.0022) C15A 2.3866 (0.0024) C16A 1.2006 (0.0035) C17A 1.3221 (0.0022) N1A Rms deviation of fitted atoms = 0.0263-11.7825(45)x + 3.1263(22)v + 18.9037(43)z = 2.1947(26)Angle to previous plane (with approximate e.s.d.) = 35.44(0.03)* 0.0433 (0.0014) C1B * 0.0372 (0.0014) C2B * 0.0182 (0.0014) C3B * -0.0396 (0.0015) C4B * -0.0617 (0.0015) C5B * -0.0248 (0.0014) C6B * 0.0301 (0.0014) C7B * 0.0484 (0.0014) C8B * 0.0379 (0.0015) C9B * 0.0106 (0.0015) C10B * -0.0318 (0.0015) C11B * -0.0564 (0.0015) C12B * -0.0300 (0.0014) C13B * 0.0186 (0.0014) C14B 0.0236 (0.0021) C15B 2.3831 (0.0023) C16B 1.0672 (0.0032) C17B 1.2574 (0.0021) N1B Rms deviation of fitted atoms = 0.0376-0.1452(139)x + 3.3520(37)y + 18.3338(102)z = 7.9399(11)Angle to previous plane (with approximate e.s.d.) = 36.78(0.05)* -0.0055 (0.0011) C2A * 0.0068 (0.0012) C3A * -0.0012 (0.0013) C4A * -0.0060 (0.0013) C5A * 0.0070 (0.0012) C6A * -0.0011 (0.0012) C7A Rms deviation of fitted atoms = 0.0052-0.6494(132)x + 3.3130(35)y + 18.6357(94)z = 7.9740(18)Angle to previous plane (with approximate e.s.d.) = 1.52(0.10)* 0.0057 (0.0011) C1A * 0.0004 (0.0011) C2A * -0.0038 (0.0012) C7A * 0.0010 (0.0012) C8A * 0.0051 (0.0012) C9A * -0.0085 (0.0011) C14A Rms deviation of fitted atoms = 0.0049-1.0916(142)x + 3.2627(38)y + 18.9201(99)z = 8.0600(33)Angle to previous plane (with approximate e.s.d.) = 1.38(0.10)* -0.0015 (0.0012) C9A * 0.0059 (0.0013) C10A * -0.0054 (0.0013) C11A * 0.0003 (0.0013) C12A * 0.0040 (0.0012) C13A * -0.0033 (0.0012) C14A Rms deviation of fitted atoms = 0.0040-12.0887(105) x + 3.2295(36) v + 18.4099(97) z = 2.0021(58)Angle to previous plane (with approximate e.s.d.) = 35.74(0.07)* -0.0085 (0.0011) C2B * 0.0070 (0.0012) C3B * -0.0009 (0.0012) C4B * -0.0037 (0.0012) C5B * 0.0018 (0.0012) C6B * 0.0043 (0.0011) C7B Rms deviation of fitted atoms = 0.0051-11.7773(98)x + 3.1106(33)v + 18.9504(85)z = 2.2407(66)Angle to previous plane (with approximate e.s.d.) = 2.30(0.10)* 0.0111 (0.0011) C1B * 0.0004 (0.0011) C2B * -0.0104 (0.0011) C7B * 0.0089 (0.0011) C8B * 0.0028 (0.0011) C9B * -0.0127 (0.0011) C14B Rms deviation of fitted atoms = 0.0090-11.5170(109)x + 3.0215(38)v + 19.3350(92)z = 2.4863(87)Angle to previous plane (with approximate e.s.d.) = 1.74(0.10)* -0.0007 (0.0011) C9B * -0.0008 (0.0012) C10B * 0.0021 (0.0013) C11B * -0.0018 (0.0013) C12B * 0.0003 (0.0012) C13B * 0.0010 (0.0011) C14B Rms deviation of fitted atoms = 0.0013**Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1A	0.12180 (8)	0.1488 (2)	0.47531 (7)	0.0333 (4)	
C1A	0.04902 (9)	0.3139 (3)	0.37409 (7)	0.0247 (4)	
C2A	0.10193 (9)	0.4194 (3)	0.35690 (7)	0.0257 (4)	
C3A	0.17505 (9)	0.3397 (3)	0.37272 (8)	0.0317 (4)	
H3A	0.1896	0.2129	0.3968	0.038*	
C4A	0.22424 (10)	0.4418 (3)	0.35401 (8)	0.0373 (5)	
H4A	0.2722	0.3845	0.3647	0.045*	
C5A	0.20426 (11)	0.6328 (3)	0.31867 (8)	0.0385 (5)	
H5A	0.2388	0.7022	0.3056	0.046*	
C6A	0.13624 (11)	0.7163 (3)	0.30357 (8)	0.0357 (5)	
H6A	0.1239	0.8459	0.2806	0.043*	
C7A	0.08265 (9)	0.6138 (3)	0.32144 (7)	0.0287 (4)	
C8A	0.01177 (10)	0.6966 (3)	0.30452 (8)	0.0312 (4)	
H8A	-0.0007	0.8254	0.2812	0.037*	
C9A	-0.04113 (9)	0.5958 (3)	0.32082 (8)	0.0290 (4)	
C10A	-0.11383 (10)	0.6799 (3)	0.30250 (8)	0.0353 (4)	
H10A	-0.1258	0.8105	0.2800	0.042*	
C11A	-0.16610 (10)	0.5773 (3)	0.31658 (9)	0.0396 (5)	
H11A	-0.2144	0.6347	0.3033	0.048*	
C12A	-0.14879 (10)	0.3849 (3)	0.35107 (9)	0.0365 (4)	
H12A	-0.1856	0.3147	0.3611	0.044*	
C13A	-0.08020 (9)	0.2988 (3)	0.37006 (8)	0.0318 (4)	
H13A	-0.0700	0.1697	0.3933	0.038*	
C14A	-0.02282 (9)	0.3985 (3)	0.35580 (8)	0.0264 (4)	
C15A	0.07100 (9)	0.1096 (3)	0.41135 (8)	0.0277 (4)	
H15A	0.0263	0.0377	0.4117	0.033*	
H15B	0.0947	0.0118	0.3912	0.033*	
C16A	0.08701 (12)	0.2721 (3)	0.50934 (9)	0.0450 (5)	
H16A	0.1228	0.3004	0.5511	0.067*	
H16B	0.0456	0.1906	0.5117	0.067*	
H16C	0.0691	0.4083	0.4881	0.067*	
C17A	0.14812 (12)	-0.0559 (4)	0.50609 (11)	0.0544 (6)	
H17A	0.1718	-0.1371	0.4830	0.082*	
H17B	0.1065	-0.1382	0.5078	0.082*	
H17C	0.1837	-0.0298	0.5481	0.082*	
N1B	0.39723 (8)	0.1841 (2)	0.39976 (7)	0.0277 (3)	
C1B	0.48528 (9)	0.3584 (3)	0.36158 (7)	0.0218 (4)	
C2B	0.43857 (9)	0.4833 (2)	0.31150 (7)	0.0215 (3)	
C3B	0.36472 (9)	0.4218 (3)	0.27462 (8)	0.0262 (4)	
H3B	0.3450	0.2951	0.2848	0.031*	
C4B	0.32186 (9)	0.5414 (3)	0.22507 (8)	0.0294 (4)	
H4B	0.2733	0.4956	0.2010	0.035*	
C5B	0.34912 (9)	0.7332 (3)	0.20918 (8)	0.0290 (4)	
H5B	0.3189	0.8152	0.1746	0.035*	
C6B	0.41853 (9)	0.7994 (3)	0.24344 (8)	0.0251 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H6B	0.4363	0.9284	0.2326	0.030*
C7B	0.46527 (8)	0.6791 (2)	0.29538 (7)	0.0207 (3)
C8B	0.53689 (9)	0.7461 (3)	0.32991 (7)	0.0244 (4)
H8B	0.5539	0.8777	0.3198	0.029*
C9B	0.58410 (9)	0.6246 (3)	0.37888 (7)	0.0238 (4)
C10B	0.65828 (9)	0.6913 (3)	0.41263 (8)	0.0304 (4)
H10B	0.6751	0.8224	0.4020	0.036*
C11B	0.70529 (10)	0.5711 (3)	0.45957 (9)	0.0362 (5)
H11B	0.7543	0.6182	0.4816	0.043*
C12B	0.68060 (10)	0.3759 (3)	0.47515 (8)	0.0350 (4)
H12B	0.7137	0.2919	0.5078	0.042*
C13B	0.61039 (9)	0.3045 (3)	0.44460 (8)	0.0291 (4)
H13B	0.5956	0.1725	0.4565	0.035*
C14B	0.55856 (9)	0.4252 (3)	0.39490 (7)	0.0231 (4)
C15B	0.45519 (9)	0.1515 (3)	0.37601 (8)	0.0261 (4)
H15C	0.4354	0.0637	0.3380	0.031*
H15D	0.4959	0.0702	0.4069	0.031*
C16B	0.42588 (10)	0.2858 (3)	0.46034 (8)	0.0346 (4)
H16D	0.3858	0.3074	0.4748	0.052*
H16E	0.4476	0.4247	0.4574	0.052*
H16F	0.4635	0.1938	0.4896	0.052*
C17B	0.36320 (12)	-0.0213 (3)	0.40245 (10)	0.0460 (5)
H17D	0.3232	0.0011	0.4170	0.069*
H17E	0.4000	-0.1172	0.4310	0.069*
H17F	0.3435	-0.0857	0.3612	0.069*

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0254 (8)	0.0407 (9)	0.0295 (8)	0.0005 (7)	0.0056 (6)	0.0096 (7)
0.0245 (9)	0.0252 (9)	0.0212 (8)	-0.0005 (7)	0.0051 (7)	-0.0035 (7)
0.0250 (9)	0.0290 (9)	0.0194 (8)	-0.0037 (7)	0.0045 (7)	-0.0035 (7)
0.0256 (10)	0.0422 (11)	0.0251 (9)	-0.0016 (8)	0.0072 (7)	0.0000 (8)
0.0244 (10)	0.0582 (13)	0.0265 (9)	-0.0066 (9)	0.0065 (8)	-0.0025 (8)
0.0342 (11)	0.0516 (12)	0.0288 (10)	-0.0175 (9)	0.0112 (8)	-0.0046 (9)
0.0441 (12)	0.0344 (10)	0.0248 (9)	-0.0131 (8)	0.0089 (9)	-0.0004 (8)
0.0320 (10)	0.0279 (9)	0.0221 (8)	-0.0051 (7)	0.0059 (7)	-0.0030(7)
0.0384 (11)	0.0249 (9)	0.0249 (9)	-0.0002 (8)	0.0061 (8)	0.0018 (7)
0.0302 (10)	0.0283 (9)	0.0223 (8)	0.0042 (7)	0.0031 (7)	-0.0030(7)
0.0366 (11)	0.0317 (10)	0.0300 (10)	0.0098 (8)	0.0045 (8)	0.0003 (8)
0.0285 (11)	0.0475 (12)	0.0359 (11)	0.0134 (9)	0.0045 (9)	-0.0040 (9)
0.0242 (10)	0.0459 (11)	0.0372 (10)	0.0011 (8)	0.0092 (8)	-0.0035 (9)
0.0277 (10)	0.0344 (10)	0.0297 (9)	-0.0001 (8)	0.0070 (8)	-0.0009 (8)
0.0243 (9)	0.0279 (9)	0.0232 (8)	0.0008 (7)	0.0048 (7)	-0.0035 (7)
0.0223 (9)	0.0269 (9)	0.0326 (9)	0.0010 (7)	0.0090 (7)	0.0007 (7)
0.0511 (13)	0.0529 (13)	0.0279 (10)	-0.0017 (10)	0.0118 (9)	-0.0005 (9)
0.0436 (13)	0.0628 (15)	0.0560 (14)	0.0198 (11)	0.0182 (11)	0.0327 (12)
0.0261 (8)	0.0282 (8)	0.0290 (8)	-0.0047 (6)	0.0105 (6)	0.0030 (6)
	U^{11} 0.0254 (8) 0.0245 (9) 0.0250 (9) 0.0256 (10) 0.0244 (10) 0.0342 (11) 0.0342 (11) 0.0320 (10) 0.0384 (11) 0.0302 (10) 0.0366 (11) 0.0242 (10) 0.0242 (10) 0.0243 (9) 0.0223 (9) 0.0511 (13) 0.0261 (8)	U^{11} U^{22} 0.0254 (8) 0.0407 (9) 0.0245 (9) 0.0252 (9) 0.0250 (9) 0.0290 (9) 0.0256 (10) 0.0422 (11) 0.0244 (10) 0.0582 (13) 0.0342 (11) 0.0516 (12) 0.0441 (12) 0.0344 (10) 0.0320 (10) 0.0279 (9) 0.0302 (10) 0.0283 (9) 0.0366 (11) 0.0317 (10) 0.0242 (10) 0.0459 (11) 0.0242 (10) 0.0459 (11) 0.0277 (10) 0.0344 (10) 0.0223 (9) 0.0279 (9) 0.0511 (13) 0.0529 (13) 0.0436 (13) 0.0282 (8)	U^{11} U^{22} U^{33} $0.0254 (8)$ $0.0407 (9)$ $0.0295 (8)$ $0.0245 (9)$ $0.0252 (9)$ $0.0212 (8)$ $0.0250 (9)$ $0.0290 (9)$ $0.0194 (8)$ $0.0256 (10)$ $0.0422 (11)$ $0.0251 (9)$ $0.0244 (10)$ $0.0582 (13)$ $0.0265 (9)$ $0.0342 (11)$ $0.0516 (12)$ $0.0288 (10)$ $0.0342 (11)$ $0.0516 (12)$ $0.0288 (10)$ $0.0342 (11)$ $0.0516 (12)$ $0.0248 (9)$ $0.0342 (10)$ $0.0279 (9)$ $0.0221 (8)$ $0.0320 (10)$ $0.0279 (9)$ $0.0249 (9)$ $0.0302 (10)$ $0.0283 (9)$ $0.0223 (8)$ $0.0366 (11)$ $0.0317 (10)$ $0.0300 (10)$ $0.0242 (10)$ $0.0459 (11)$ $0.0372 (10)$ $0.0277 (10)$ $0.0344 (10)$ $0.0297 (9)$ $0.0223 (9)$ $0.0269 (9)$ $0.0326 (9)$ $0.0511 (13)$ $0.0529 (13)$ $0.0279 (10)$ $0.0436 (13)$ $0.0282 (8)$ $0.0290 (8)$	U^{11} U^{22} U^{33} U^{12} 0.0254 (8) 0.0407 (9) 0.0295 (8) 0.0005 (7) 0.0245 (9) 0.0252 (9) 0.0212 (8) -0.0005 (7) 0.0250 (9) 0.0290 (9) 0.0194 (8) -0.0037 (7) 0.0256 (10) 0.0422 (11) 0.0251 (9) -0.0016 (8) 0.0244 (10) 0.0582 (13) 0.0265 (9) -0.0066 (9) 0.0342 (11) 0.0516 (12) 0.0288 (10) -0.0175 (9) 0.0342 (11) 0.0516 (12) 0.0248 (9) -0.0131 (8) 0.0320 (10) 0.0279 (9) 0.0221 (8) -0.0051 (7) 0.0384 (11) 0.0249 (9) -0.0232 (8) 0.0042 (7) 0.0366 (11) 0.0177 (10) 0.0300 (10) 0.0098 (8) 0.0285 (11) 0.0475 (12) 0.0359 (11) 0.0134 (9) 0.0242 (10) 0.0459 (11) 0.0277 (9) -0.0001 (8) 0.0243 (9) 0.0279 (9) 0.0232 (8) 0.0008 (7) 0.0223 (9) 0.0269 (9) 0.0326 (9) 0.0010 (7) 0.0511 (13) 0.0529 (13) 0.0279 (10) -0.0017 (10) 0.0436 (13) 0.0628 (15) 0.0290 (8) -0.0047 (6)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0254 (8)$ $0.0407 (9)$ $0.0295 (8)$ $0.0005 (7)$ $0.0056 (6)$ $0.0245 (9)$ $0.0252 (9)$ $0.0212 (8)$ $-0.0005 (7)$ $0.0051 (7)$ $0.0250 (9)$ $0.0290 (9)$ $0.0194 (8)$ $-0.0037 (7)$ $0.0045 (7)$ $0.0256 (10)$ $0.0422 (11)$ $0.0251 (9)$ $-0.0016 (8)$ $0.0072 (7)$ $0.0244 (10)$ $0.0582 (13)$ $0.0265 (9)$ $-0.0066 (9)$ $0.0065 (8)$ $0.0342 (11)$ $0.0516 (12)$ $0.0288 (10)$ $-0.0175 (9)$ $0.0112 (8)$ $0.0441 (12)$ $0.0344 (10)$ $0.0248 (9)$ $-0.0051 (7)$ $0.0059 (7)$ $0.0320 (10)$ $0.0279 (9)$ $0.0221 (8)$ $-0.0051 (7)$ $0.0059 (7)$ $0.0384 (11)$ $0.0249 (9)$ $-0.0233 (8)$ $0.0042 (7)$ $0.0031 (7)$ $0.0320 (10)$ $0.0283 (9)$ $0.0223 (8)$ $0.0042 (7)$ $0.0031 (7)$ $0.0366 (11)$ $0.0317 (10)$ $0.0300 (10)$ $0.0098 (8)$ $0.0045 (8)$ $0.0242 (10)$ $0.0459 (11)$ $0.0277 (9)$ $-0.0001 (8)$ $0.0070 (8)$ $0.0243 (9)$ $0.0279 (9)$ $0.0232 (8)$ $0.0008 (7)$ $0.0048 (7)$ $0.0223 (9)$ $0.0269 (9)$ $0.0326 (9)$ $0.0010 (7)$ $0.0090 (7)$ $0.0511 (13)$ $0.0529 (13)$ $0.0279 (10)$ $-0.0017 (10)$ $0.0118 (9)$ $0.0436 (13)$ $0.0628 (15)$ $0.0560 (14)$ $0.0198 (11)$ $0.0182 (11)$ $0.0261 (8)$ $0.0282 (8)$ $0.0290 (8)$ $-0.0047 (6)$

C1B	0.0242 (9)	0.0223 (8)	0.0220 (8)	0.0030 (6)	0.0122 (7)	-0.0016 (6)
C2B	0.0231 (9)	0.0231 (8)	0.0212 (8)	0.0009 (6)	0.0118 (7)	-0.0022 (6)
C3B	0.0257 (9)	0.0263 (9)	0.0269 (9)	-0.0044 (7)	0.0106 (7)	-0.0008 (7)
C4B	0.0221 (9)	0.0362 (10)	0.0283 (9)	-0.0028 (7)	0.0077 (7)	0.0021 (7)
C5B	0.0267 (10)	0.0358 (10)	0.0251 (9)	0.0046 (7)	0.0104 (8)	0.0079 (7)
C6B	0.0260 (9)	0.0251 (9)	0.0281 (9)	0.0004 (7)	0.0144 (7)	0.0036 (7)
C7B	0.0219 (8)	0.0211 (8)	0.0225 (8)	0.0016 (6)	0.0124 (7)	-0.0006 (6)
C8B	0.0274 (9)	0.0230 (8)	0.0274 (9)	-0.0009 (7)	0.0157 (7)	-0.0019 (7)
C9B	0.0224 (9)	0.0285 (9)	0.0235 (8)	-0.0007 (7)	0.0121 (7)	-0.0038 (7)
C10B	0.0262 (9)	0.0390 (10)	0.0275 (9)	-0.0039 (8)	0.0121 (8)	-0.0047 (8)
C11B	0.0222 (10)	0.0548 (12)	0.0304 (10)	-0.0018 (8)	0.0089 (8)	-0.0058 (9)
C12B	0.0260 (10)	0.0490 (12)	0.0281 (9)	0.0100 (8)	0.0081 (8)	0.0051 (8)
C13B	0.0278 (10)	0.0335 (10)	0.0279 (9)	0.0065 (7)	0.0127 (8)	0.0026 (7)
C14B	0.0226 (9)	0.0281 (9)	0.0211 (8)	0.0036 (7)	0.0110 (7)	-0.0026 (6)
C15B	0.0309 (10)	0.0222 (9)	0.0252 (8)	0.0016 (7)	0.0105 (7)	0.0005 (7)
C16B	0.0361 (11)	0.0409 (11)	0.0321 (10)	-0.0004 (8)	0.0190 (8)	-0.0021 (8)
C17B	0.0471 (13)	0.0416 (12)	0.0471 (12)	-0.0183 (10)	0.0157 (10)	0.0051 (10)

Geometric parameters (Å, °)

N1A—C16A	1.454 (3)	N1B—C16B	1.458 (2)
N1A—C17A	1.461 (2)	N1B—C17B	1.458 (2)
N1A—C15A	1.470 (2)	N1B—C15B	1.463 (2)
C1A—C14A	1.414 (2)	C1B—C14B	1.416 (2)
C1A—C2A	1.415 (2)	C1B—C2B	1.416 (2)
C1A—C15A	1.512 (2)	C1B—C15B	1.512 (2)
C2A—C3A	1.432 (2)	C2B—C3B	1.431 (2)
C2A—C7A	1.437 (2)	C2B—C7B	1.436 (2)
C3A—C4A	1.364 (3)	C3B—C4B	1.367 (2)
СЗА—НЗА	0.9500	СЗВ—НЗВ	0.9500
C4A—C5A	1.418 (3)	C4B—C5B	1.418 (2)
C4A—H4A	0.9500	C4B—H4B	0.9500
C5A—C6A	1.352 (3)	C5B—C6B	1.358 (2)
C5A—H5A	0.9500	C5B—H5B	0.9500
C6A—C7A	1.427 (2)	C6B—C7B	1.427 (2)
С6А—Н6А	0.9500	С6В—Н6В	0.9500
C7A—C8A	1.396 (2)	C7B—C8B	1.395 (2)
C8A—C9A	1.390 (3)	C8B—C9B	1.393 (2)
C8A—H8A	0.9500	C8B—H8B	0.9500
C9A—C10A	1.428 (2)	C9B—C10B	1.432 (2)
C9A—C14A	1.446 (2)	C9B—C14B	1.444 (2)
C10A—C11A	1.356 (3)	C10B—C11B	1.361 (3)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.414 (3)	C11B—C12B	1.410 (3)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—C13A	1.361 (2)	C12B—C13B	1.366 (2)
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—C14A	1.436 (2)	C13B—C14B	1.434 (2)

C13A—H13A	0.9500	C13B—H13B	0.9500
C15A—H15A	0.9900	C15B—H15C	0.9900
C15A—H15B	0.9900	C15B—H15D	0.9900
С16А—Н16А	0.9800	C16B—H16D	0.9800
C16A—H16B	0.9800	C16B—H16F	0.9800
	0.9800	C16D H16E	0.9800
C17A = H17A	0.9800		0.9800
C17A = H17D	0.9800		0.9800
CI/A—HI/B	0.9800	CI/B—HI/E	0.9800
CI/A—HI/C	0.9800	C1/B—H1/F	0.9800
	110.10 (1()		110 70 (15)
C16A - N1A - C17A	110.12 (16)	CIGB—NIB—CI/B	110.70(15)
C16A—NIA—C15A	111.58 (14)	CI6B—NIB—CI5B	111.32 (13)
C17A—N1A—C15A	109.45 (16)	C17B—N1B—C15B	109.43 (14)
C14A—C1A—C2A	120.04 (15)	C14B—C1B—C2B	119.84 (14)
C14A—C1A—C15A	121.46 (15)	C14B—C1B—C15B	122.14 (14)
C2A—C1A—C15A	118.50 (15)	C2B—C1B—C15B	117.98 (14)
C1A—C2A—C3A	122.84 (16)	C1B—C2B—C3B	122.79 (15)
C1A—C2A—C7A	119.79 (15)	C1B—C2B—C7B	119.91 (14)
C3A—C2A—C7A	117.37 (16)	C3B—C2B—C7B	117.29 (14)
C4A—C3A—C2A	121.49 (18)	C4B—C3B—C2B	121.46 (16)
С4А—С3А—Н3А	119.3	C4B—C3B—H3B	119.3
С2А—С3А—Н3А	119.3	C2B—C3B—H3B	119.3
C3A - C4A - C5A	120.49 (18)	C3B-C4B-C5B	120.73 (16)
C_{3A} $-C_{4A}$ $-H_{4A}$	119.8	C3B-C4B-H4B	119.6
C_{5A} C_{4A} H_{4A}	119.8	C5B-C4B-H4B	119.6
C6A C5A C4A	119.0	C6B $C5B$ $C4B$	119.0
$C_{0A} = C_{0A} = C_{0A}$	110.0	$C_{4}D$ $C_{5}D$ $U_{5}D$	119.85 (15)
CAA = C5A = H5A	119.9		120.1
	119.9		120.1
C5A - C6A - C/A	121.36 (18)		121.30 (15)
С5А—С6А—Н6А	119.3	С5В—С6В—Н6В	119.4
С7А—С6А—Н6А	119.3	С7В—С6В—Н6В	119.4
C8A—C7A—C6A	121.49 (17)	C8B—C7B—C6B	121.10 (14)
C8A—C7A—C2A	119.38 (16)	C8B—C7B—C2B	119.52 (14)
C6A—C7A—C2A	119.12 (16)	C6B—C7B—C2B	119.36 (14)
C9A—C8A—C7A	121.85 (16)	C9B—C8B—C7B	121.55 (15)
С9А—С8А—Н8А	119.1	C9B—C8B—H8B	119.2
С7А—С8А—Н8А	119.1	C7B—C8B—H8B	119.2
C8AC9AC10A	121.44 (17)	C8B—C9B—C10B	121.05 (15)
C8A—C9A—C14A	119.38 (16)	C8B—C9B—C14B	119.59 (15)
C10A—C9A—C14A	119.16 (17)	C10B—C9B—C14B	119.34 (15)
C11A—C10A—C9A	121.36 (17)	C11B—C10B—C9B	121.44 (17)
C11A - C10A - H10A	1193	C11B $C10B$ $H10B$	1193
C9A - C10A - H10A	1193	C9B-C10B-H10B	119 3
C10A - C11A - C12A	120.03 (17)	C10B-C11B-C12B	119 35 (17)
C10A = C11A = H11A	120.05 (17)	C10B C11B H11P	120.3
C_{12} C_{11} H_{11}	120.0		120.3
$C_{12A} = C_{11A} = \Pi_{11A}$	120.0	$C_{12}D = C_{11}D = C_{11}D$	120.3 121.72(17)
C12A - C12A - C11A	120.95 (19)	$C_{12}B = C_{12}B = U_{12}B$	121.73(17)
U13A—U12A—H12A	119.5	C13B—C12B—H12B	119.1

C11A—C12A—H12A	119.5	C11B—C12B—H12B	119.1
C12A—C13A—C14A	121.59 (18)	C12B—C13B—C14B	121.21 (17)
C12A—C13A—H13A	119.2	C12B—C13B—H13B	119.4
C14A—C13A—H13A	119.2	C14B—C13B—H13B	119.4
C1A—C14A—C13A	123.56 (16)	C1B—C14B—C13B	123.54 (15)
C1A—C14A—C9A	119.53 (16)	C1B—C14B—C9B	119.53 (14)
C13A—C14A—C9A	116.91 (15)	C13B—C14B—C9B	116.92 (15)
N1A—C15A—C1A	112.44 (14)	N1B-C15B-C1B	113.32 (13)
N1A—C15A—H15A	109.1	N1B—C15B—H15C	108.9
C1A—C15A—H15A	109.1	C1B—C15B—H15C	108.9
N1A—C15A—H15B	109.1	N1B—C15B—H15D	108.9
C1A—C15A—H15B	109.1	C1B—C15B—H15D	108.9
H15A—C15A—H15B	107.8	H15C—C15B—H15D	107.7
N1A—C16A—H16A	109.5	N1B—C16B—H16D	109.5
N1A—C16A—H16B	109.5	N1B—C16B—H16E	109.5
H16A—C16A—H16B	109.5	H16D—C16B—H16E	109.5
N1A—C16A—H16C	109.5	N1B—C16B—H16F	109.5
H16A—C16A—H16C	109.5	H16D—C16B—H16F	109.5
H16B—C16A—H16C	109.5	H16E—C16B—H16F	109.5
N1A—C17A—H17A	109.5	N1B—C17B—H17D	109.5
N1A—C17A—H17B	109.5	N1B—C17B—H17E	109.5
H17A—C17A—H17B	109.5	H17D—C17B—H17E	109.5
N1A—C17A—H17C	109.5	N1B—C17B—H17F	109.5
H17A—C17A—H17C	109.5	H17D—C17B—H17F	109.5
H17B—C17A—H17C	109.5	H17E—C17B—H17F	109.5
C2A—C1A—C15A—N1A	71.54 (19)	C1A—C15A—N1A—C16A	65.22 (19)
C2B-C1B-C15B-N1B	-68.23 (19)	C1B—C15B—N1B—C16B	-66.82 (18)
C14A—C1A—C15A—N1A	-109.24 (17)	C1A—C15A—N1A—C17A	-172.65 (15)
C14B—C1B—C15B—N1B	114.10 (16)	C1B—C15B—N1B—C17B	170.50 (14)