organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Basavegowda Nagaraj,^a Hemmige S. Yathirajan,^a Rajenahally S. Narasegowda,^a Padmarajaiah Nagaraja^a and Daniel E. Lynch^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail: apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.050 wR factor = 0.136 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

10-Methoxydibenz[b,f]azepine-5-carboxamide

The structure of the title compound, $C_{16}H_{14}N_2O_2$, contains a seven-membered ring that adopts a boat conformation, and the overall molecular shape is that of a butterfly. In the packing, the molecules form a convoluted hydrogen-bonded polymer *via* a typical $R_2^2(8)$ graph-set dimer, between carbox-amide groups, and an $R_2^2(16)$ graph-set dimer formed through an interaction between the second carboxamide NH group and an adjacent methoxy O atom (in each molecule). The dihedral angle between the benzene rings is 56.09 (5)°.

Comment

The title compound, (I), is an intermediate in the synthesis of the anticonvulsant drug oxcarbazepine (Kricka & Ledwith, 1974), being the next step on from 10-methoxy-5*H*-dibenz-[b,f]azepine, the structure of which we reported recently (Nagaraj *et al.*, 2005).

The structure of (I) (Fig. 1) contains a seven-membered ring that adopts a boat conformation (Cremer & Pople, 1975), and

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii. Received 28 April 2005 Accepted 9 May 2005 Online 14 May 2005

Figure 2

Partial packing diagram for (I), showing the hydrogen-bonding interactions as dashed lines. For clarity, H atoms not involved in the hydrogenbonding interactions have been omitted. [Symmetry codes: (i) -x, 1 - y, -z; (ii) 1-x, 1-y, -z.]

the overall molecular shape is that of a butterfly. In the packing of (I), the molecules form two types of dimers, thus creating a convoluted hydrogen-bonded polymer (Fig. 2). A typical $R_2^2(8)$ graph-set (Etter, 1990) dimer is formed by interaction between carboxamide groups, while an interaction between the second carboxamide NH group and an adjacent methoxy O atom (in each molecule) creates an $R_2^2(16)$ graphset dimer, listed in Table 1. The dihedral angle between the benzene rings is $56.09(5)^{\circ}$.

Experimental

The title compound was prepared by heating 10-methoxy-5Hdibenz[b,f]azepine (2.23 g, 10 mmol) with NaOCN (0.65 g, 10 mmol) in the presence of monochloracetic acid (2.95 g, 10 mmol) in toluene (5 ml). The compound was recrystallized from a dichloromethaneethanol solution (1:1 v/v).

Crystal data

$C_{16}H_{14}N_2O_2$	Z = 2
$M_r = 266.29$	$D_x = 1.328 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 8.8003 (2) Å	Cell parameters from 3002
b = 9.2012 (2) Å	reflections
c = 9.3735(3) Å	$\theta = 2.9-27.5^{\circ}$
$\alpha = 64.6999 \ (16)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 76.0520 \ (15)^{\circ}$	T = 120 (2) K
$\gamma = 83.7398 \ (18)^{\circ}$	Block, colourless
$V = 665.95 (3) \text{ Å}^3$	$0.54 \times 0.36 \times 0.19 \text{ mm}$

Data collection

S = 1.07

Nonius KappaCCD diffractometer	2527 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.6^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -11 \rightarrow 11$
$T_{\min} = 0.953, T_{\max} = 0.983$	$k = -11 \rightarrow 11$
14 982 measured reflections	$l = -11 \rightarrow 12$
3054 independent reflections	
Refinement	

 $w = 1/[\sigma^2(F_o^2) + (0.0757P)^2]$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F²) = 0.136 + 0.2176*P*] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ -3 3054 reflections $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^2$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ 189 parameters Extinction correction: SHELXL97 H atoms treated by a mixture of independent and constrained Extinction coefficient: 0.155 (14) refinement

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N51 - H51 \cdots O51^{i} \\ N51 - H52 \cdots O10^{ii} \end{array}$	0.893 (19)	2.05 (2)	2.9426 (16)	174.1 (16)
	0.893 (19)	2.339 (18)	3.0720 (16)	139.4 (15)

Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z.

All H atoms not included in the hydrogen-bonding associations were included in the refinement at calculated positions, in the ridingmodel approximation, with C-H distances of 0.95 (ArH) and 0.98 Å (CH₃). The isotropic displacement parameters for the aromatic H atoms were set equal to $1.2U_{eq}$ of the carrier atom while the methyl H atoms were set equal to $1.5U_{eq}$ of the carrier atom. The two amide H atoms were located in difference syntheses and their positional parameters were refined. The isotropic displacement parameters for these located H atoms were set equal to $1.2U_{eq}$ of the carrier N atom.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Kricka, L. J. & Ledwith, A. (1974). Chem. Rev. 74, 101-123.
- Nagaraj, B., Yathirajan, H. S. & Lynch, D. E. (2005). Acta Cryst. E61, o1757-01759
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2005). E61, o1760-o1761 [https://doi.org/10.1107/S1600536805014601]

10-Methoxydibenz[b,f]azepine-5-carboxamide

Basavegowda Nagaraj, Hemmige S. Yathirajan, Rajenahally S. Narasegowda, Padmarajaiah Nagaraja and Daniel E. Lynch

10-Methoxydibenz[b,f]azepine-5-carboxamide

Crystal data

C₁₆H₁₄N₂O₂ $M_r = 266.29$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.8003 (2) Å b = 9.2012 (2) Å c = 9.3735 (3) Å $\alpha = 64.6999$ (16)° $\beta = 76.0520$ (15)° $\gamma = 83.7398$ (18)° V = 665.95 (3) Å³

Data collection

Nonius KappaCCD diffractometer Radiation source: Bruker Nonius FR591 rotating anode 10 cm confocal mirrors monochromator Detector resolution: 9.091 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.136$ S = 1.073054 reflections 189 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Z = 2 F(000) = 280 $D_x = 1.328 \text{ Mg m}^{-3}$ Melting point: 454 K Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 3002 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KPlate, colourless $0.54 \times 0.36 \times 0.19 \text{ mm}$

 $T_{\min} = 0.953, T_{\max} = 0.983$ 14982 measured reflections 3054 independent reflections 2527 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{\max} = 27.6^{\circ}, \theta_{\min} = 3.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -11 \rightarrow 12$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0757P)^2 + 0.2176P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.155 (14)

Special details

Experimental. The minimum and maximum absorption values stated above are those calculated in *SHELXL97* from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.901594.

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O10	0.50862 (12)	0.41544 (12)	0.28982 (13)	0.0319 (3)	
O51	-0.03722 (11)	0.62828 (12)	0.10931 (12)	0.0237 (3)	
N5	0.18124 (13)	0.75306 (14)	0.08902 (13)	0.0193 (3)	
N51	0.17788 (15)	0.63327 (16)	-0.08401 (15)	0.0245 (3)	
H51	0.131 (2)	0.559 (2)	-0.097(2)	0.029*	
H52	0.282 (2)	0.642 (2)	-0.113 (2)	0.029*	
C1	0.08186 (18)	0.6754 (2)	0.52440 (18)	0.0288 (3)	
H1	0.1064	0.6010	0.6238	0.035*	
C2	-0.02650 (19)	0.7956 (2)	0.52389 (19)	0.0315 (4)	
H2	-0.0748	0.8039	0.6224	0.038*	
C3	-0.06553 (17)	0.90457 (19)	0.3807 (2)	0.0292 (4)	
H3	-0.1393	0.9881	0.3805	0.035*	
C4	0.00404 (16)	0.89061 (18)	0.23750 (18)	0.0243 (3)	
H4	-0.0229	0.9642	0.1391	0.029*	
C6	0.40025 (16)	0.91305 (17)	-0.11514 (17)	0.0233 (3)	
H6	0.3276	0.9834	-0.1734	0.028*	
C7	0.55957 (17)	0.94138 (18)	-0.17407 (18)	0.0267 (3)	
H7	0.5965	1.0296	-0.2740	0.032*	
C8	0.66488 (17)	0.84024 (18)	-0.08635 (19)	0.0265 (3)	
H8	0.7740	0.8603	-0.1261	0.032*	
C9	0.61233 (16)	0.71044 (17)	0.05846 (18)	0.0251 (3)	
H9	0.6857	0.6428	0.1177	0.030*	
C10	0.39947 (17)	0.53775 (17)	0.27309 (18)	0.0237 (3)	
C11	0.27161 (17)	0.53113 (18)	0.38749 (18)	0.0258 (3)	
H11	0.2537	0.4333	0.4821	0.031*	
C12	0.15683 (16)	0.66085 (17)	0.38017 (17)	0.0223 (3)	
C13	0.11316 (15)	0.76916 (16)	0.23758 (16)	0.0197 (3)	
C14	0.34680 (15)	0.78133 (16)	0.02951 (16)	0.0193 (3)	
C15	0.45189 (16)	0.67769 (16)	0.11857 (17)	0.0209 (3)	
C16	0.4869 (2)	0.2772 (2)	0.4403 (2)	0.0380 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H161	0.3880	0.2253	0.4591	0.057*
H162	0.4840	0.3097	0.5278	0.057*
H163	0.5738	0.2015	0.4373	0.057*
C51	0.10077 (15)	0.66637 (15)	0.04191 (16)	0.0185 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O10	0.0265 (6)	0.0258 (6)	0.0348 (6)	0.0025 (4)	-0.0049 (5)	-0.0061 (5)
O51	0.0152 (5)	0.0325 (6)	0.0283 (5)	-0.0029 (4)	-0.0031 (4)	-0.0172 (4)
N5	0.0133 (5)	0.0258 (6)	0.0214 (6)	-0.0025 (4)	-0.0014 (4)	-0.0129 (5)
N51	0.0188 (6)	0.0330 (7)	0.0282 (7)	-0.0046 (5)	-0.0012 (5)	-0.0198 (6)
C1	0.0283 (8)	0.0365 (8)	0.0224 (7)	-0.0084 (6)	-0.0013 (6)	-0.0132 (6)
C2	0.0290 (8)	0.0415 (9)	0.0294 (8)	-0.0102 (7)	0.0043 (6)	-0.0231 (7)
C3	0.0211 (7)	0.0325 (8)	0.0389 (9)	-0.0030 (6)	0.0013 (6)	-0.0229 (7)
C4	0.0187 (7)	0.0276 (7)	0.0281 (7)	-0.0025 (5)	-0.0027 (5)	-0.0137 (6)
C6	0.0210 (7)	0.0266 (7)	0.0235 (7)	-0.0008 (5)	-0.0040 (5)	-0.0118 (6)
C7	0.0253 (8)	0.0276 (7)	0.0242 (7)	-0.0066 (6)	0.0021 (6)	-0.0105 (6)
C8	0.0160 (7)	0.0291 (7)	0.0359 (8)	-0.0047 (5)	0.0018 (6)	-0.0179 (7)
C9	0.0179 (7)	0.0244 (7)	0.0351 (8)	0.0000 (5)	-0.0053 (6)	-0.0146 (6)
C10	0.0210 (7)	0.0215 (7)	0.0296 (7)	-0.0003 (5)	-0.0085 (6)	-0.0100 (6)
C11	0.0256 (7)	0.0249 (7)	0.0247 (7)	-0.0043 (6)	-0.0061 (6)	-0.0069 (6)
C12	0.0205 (7)	0.0250 (7)	0.0229 (7)	-0.0068 (5)	-0.0018 (5)	-0.0113 (6)
C13	0.0160 (6)	0.0247 (7)	0.0219 (7)	-0.0060 (5)	-0.0006 (5)	-0.0133 (6)
C14	0.0150 (6)	0.0237 (7)	0.0225 (7)	-0.0020 (5)	-0.0019 (5)	-0.0134 (6)
C15	0.0172 (7)	0.0219 (7)	0.0261 (7)	-0.0021 (5)	-0.0026 (5)	-0.0128 (6)
C16	0.0371 (9)	0.0293 (8)	0.0372 (9)	0.0033 (7)	-0.0083 (7)	-0.0048 (7)
C51	0.0169 (6)	0.0189 (6)	0.0205 (6)	0.0006 (5)	-0.0066 (5)	-0.0079 (5)

Geometric parameters (Å, °)

O10-C10	1.3784 (17)	C6—C7	1.3864 (19)
O10—C16	1.4262 (19)	C6—C14	1.3931 (19)
O51—C51	1.2371 (16)	С6—Н6	0.95
N5—C51	1.3812 (17)	C7—C8	1.388 (2)
N5—C14	1.4382 (16)	С7—Н7	0.95
N5—C13	1.4404 (17)	C8—C9	1.384 (2)
N51—C51	1.3500 (18)	C8—H8	0.95
N51—H51	0.893 (19)	C9—C15	1.4021 (19)
N51—H52	0.893 (19)	С9—Н9	0.95
C1—C2	1.379 (2)	C10-C11	1.341 (2)
C1—C12	1.409 (2)	C10—C15	1.4772 (19)
C1—H1	0.95	C11—C12	1.466 (2)
C2—C3	1.387 (2)	C11—H11	0.95
С2—Н2	0.95	C12—C13	1.397 (2)
C3—C4	1.388 (2)	C14—C15	1.4004 (19)
С3—Н3	0.95	C16—H161	0.98
C4—C13	1.392 (2)	C16—H162	0.98

C4—H4	0.95	С16—Н163	0.98
C10 O10 C16	117 75 (12)	C8 C0 H0	110 7
$C_{10} = 0.10 = 0.10$	117.75(12) 122.20(11)	$C_1 = C_2 = H_2$	119.7
$C_{51} N_{5} C_{13}$	122.20(11) 118.35(11)	$C_{11} - C_{10} - O_{10}$	123 75 (13)
$C_{14} = N_{5} = C_{13}$	116.33(11) 116.23(10)	$C_{11} = C_{10} = C_{15}$	125.75(13) 126.28(13)
$C_{14} = N_{5} = C_{15}$	110.23(10) 113.0(11)	010 C10 C15	120.28(13) 100.81(12)
C51_N51_H52	110.9 (11)	$C_{10} = C_{10} = C_{13}$	109.81(12) 126.05(12)
C51—N51—H52	119.5 (11)	C10-C11-C12	120.05 (15)
H31 - H31 - H32	119.2 (10)		117.0
	121.18 (14)		117.0
C2—C1—H1	119.4	C13 - C12 - C1	117.54 (13)
C12—C1—H1	119.4	C13—C12—C11	123.48 (13)
C1—C2—C3	120.48 (14)	C1—C12—C11	118.94 (13)
C1—C2—H2	119.8	C4—C13—C12	121.06 (13)
С3—С2—Н2	119.8	C4—C13—N5	119.73 (12)
C2—C3—C4	119.45 (14)	C12—C13—N5	119.20 (12)
С2—С3—Н3	120.3	C6—C14—C15	120.90 (12)
С4—С3—Н3	120.3	C6—C14—N5	119.41 (12)
C3—C4—C13	120.24 (14)	C15—C14—N5	119.69 (12)
C3—C4—H4	119.9	C14—C15—C9	118.19 (13)
С13—С4—Н4	119.9	C14—C15—C10	122.41 (12)
C7—C6—C14	119.98 (13)	C9—C15—C10	119.40 (13)
С7—С6—Н6	120.0	O10-C16-H161	109.5
С14—С6—Н6	120.0	O10—C16—H162	109.5
C6—C7—C8	119.67 (13)	H161—C16—H162	109.5
С6—С7—Н7	120.2	O10—C16—H163	109.5
С8—С7—Н7	120.2	H161—C16—H163	109.5
C9—C8—C7	120.58 (13)	H162—C16—H163	109.5
С9—С8—Н8	119.7	051—C51—N51	122.82 (12)
C7—C8—H8	119.7	051-051-N5	120.43(12)
C_{8} C_{9} C_{15}	120.66 (13)	N51-C51-N5	116 68 (12)
	120.00 (10)		110.00 (12)
C12—C1—C2—C3	0.7 (2)	C51—N5—C13—C12	94.38 (15)
C1—C2—C3—C4	0.8 (2)	C14—N5—C13—C12	-65.81 (16)
C2—C3—C4—C13	-0.6 (2)	C7—C6—C14—C15	1.1 (2)
C14—C6—C7—C8	-1.5 (2)	C7—C6—C14—N5	-179.81 (12)
C6—C7—C8—C9	0.7 (2)	C51—N5—C14—C6	86.66 (16)
C7—C8—C9—C15	0.6 (2)	C13—N5—C14—C6	-113.98 (14)
C16—O10—C10—C11	-2.7 (2)	C51—N5—C14—C15	-94.23 (16)
C16—O10—C10—C15	172.88 (13)	C13—N5—C14—C15	65.13 (17)
O10-C10-C11-C12	176.14 (13)	C6—C14—C15—C9	0.2 (2)
C15—C10—C11—C12	1.3 (2)	N5—C14—C15—C9	-178.88 (11)
C2-C1-C12-C13	-2.3 (2)	C6-C14-C15-C10	179.44 (13)
C2-C1-C12-C11	179.75 (13)	N5-C14-C15-C10	0.3 (2)
C10-C11-C12-C13	35.0 (2)	C8—C9—C15—C14	-1.1 (2)
C10-C11-C12-C1	-147.14(15)	C8-C9-C15-C10	179.68 (13)
C_{3} C_{4} C_{13} C_{12}	-1.0 (2)	$C_{11} - C_{10} - C_{15} - C_{14}$	-37.2(2)
C_{3} C_{4} C_{13} N_{5}	178 23 (12)	010-010-015-014	147 39 (13)
05 OT 015-115	1,0.23 (12)	010 010 013-014	17/13/(13)

2.4 (2)	C11—C10—C15—C9	142.05 (15)
-179.69 (13)	O10-C10-C15-C9	-33.39 (18)
-176.85 (12)	C14—N5—C51—O51	171.50 (12)
1.0 (2)	C13—N5—C51—O51	12.56 (18)
-84.90 (16)	C14—N5—C51—N51	-11.43 (18)
114.91 (14)	C13—N5—C51—N51	-170.38 (12)
	2.4 (2) -179.69 (13) -176.85 (12) 1.0 (2) -84.90 (16) 114.91 (14)	2.4 (2) C11—C10—C15—C9 -179.69 (13) O10—C10—C15—C9 -176.85 (12) C14—N5—C51—O51 1.0 (2) C13—N5—C51—O51 -84.90 (16) C14—N5—C51—N51 114.91 (14) C13—N5—C51—N51

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H··· A
N51—H51···O51 ⁱ	0.893 (19)	2.05 (2)	2.9426 (16)	174.1 (16)
N51—H52···O10 ⁱⁱ	0.893 (19)	2.339 (18)	3.0720 (16)	139.4 (15)

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*.