Download citation
Download citation
link to html
The title racemic compound, C14H20O2, a tricylic diketone isolated from en­amine reactions of cyclo­hexanone with methyl vinyl ketone, is shown to have an all-chair conformation and a cis stereochemical relationship for its methine H atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805013759/ob6505sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805013759/ob6505Isup2.hkl
Contains datablock I

CCDC reference: 274598

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.086
  • Data-to-parameter ratio = 7.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.90 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C10 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1154 Count of symmetry unique reflns 1154 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(4aS*,7aR*)-2,10(3H,11H)-Dioxooctahydro-1H-benzo[d]naphthalene top
Crystal data top
C14H20O2Dx = 1.219 Mg m3
Mr = 220.30Melting point: 435 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 33 reflections
a = 10.618 (3) Åθ = 2.3–9.9°
b = 16.224 (4) ŵ = 0.08 mm1
c = 6.9661 (15) ÅT = 296 K
V = 1200.0 (5) Å3Parallelepiped, colourless
Z = 40.50 × 0.19 × 0.19 mm
F(000) = 480
Data collection top
Siemens P4
diffractometer
725 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
2θ/θ scansh = 1212
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
k = 1919
Tmin = 0.975, Tmax = 0.983l = 88
2308 measured reflections3 standard reflections every 97 reflections
1154 independent reflections intensity decay: variation <1.2
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0192P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.13 e Å3
1154 reflectionsΔρmin = 0.12 e Å3
146 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.022 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Special details top

Experimental. crystal mounted on glass fiber using cyanoacrylate cement

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4304 (2)0.53088 (16)0.6233 (5)0.0663 (8)
O20.5464 (3)0.7321 (2)0.2868 (5)0.1125 (14)
C10.6070 (3)0.6117 (2)0.7216 (6)0.0444 (9)
H1A0.61990.60910.85930.053*
H1B0.55150.65790.69550.053*
C20.5435 (3)0.5333 (2)0.6564 (6)0.0469 (9)
C30.6234 (3)0.4580 (2)0.6467 (7)0.0557 (10)
H3A0.57990.41650.57150.067*
H3B0.63430.43630.77540.067*
C4A0.8167 (3)0.54921 (19)0.6426 (6)0.0464 (9)
H4A0.89290.55870.56630.056*
C40.7524 (3)0.4729 (2)0.5589 (6)0.0569 (11)
H4B0.74350.47970.42120.068*
H4C0.80520.42510.58140.068*
C50.8596 (4)0.5352 (2)0.8494 (6)0.0593 (12)
H5A0.78670.52230.92790.071*
H5B0.91580.48810.85320.071*
C60.9263 (4)0.6092 (2)0.9335 (7)0.0725 (13)
H6A0.94450.59901.06790.087*
H6B1.00580.61730.86740.087*
C7A0.8059 (3)0.7014 (2)0.7101 (5)0.0507 (11)
H7A0.88310.70800.63440.061*
C70.8474 (4)0.6864 (3)0.9155 (6)0.0625 (13)
H7B0.89580.73340.96000.075*
H7C0.77360.68140.99670.075*
C80.7323 (4)0.7811 (2)0.6884 (7)0.0695 (14)
H8A0.78210.82640.73810.083*
H8B0.65560.77770.76350.083*
C90.6985 (5)0.7984 (3)0.4772 (7)0.0836 (17)
H9A0.64010.84440.47180.100*
H9B0.77410.81420.40840.100*
C100.6412 (5)0.7265 (3)0.3817 (6)0.0690 (14)
C110.7093 (4)0.6468 (2)0.4094 (5)0.0581 (11)
H11A0.78890.64910.34130.070*
H11B0.65970.60260.35380.070*
C11A0.7346 (3)0.62721 (18)0.6227 (5)0.0379 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (15)0.0775 (19)0.079 (2)0.0062 (14)0.0077 (16)0.0066 (19)
O20.103 (3)0.115 (3)0.119 (3)0.013 (2)0.051 (3)0.037 (2)
C10.0401 (19)0.0410 (19)0.052 (2)0.0018 (18)0.0025 (18)0.0011 (18)
C20.044 (2)0.053 (2)0.044 (2)0.0028 (19)0.000 (2)0.009 (2)
C30.055 (2)0.044 (2)0.068 (3)0.001 (2)0.005 (3)0.001 (2)
C4A0.0335 (17)0.054 (2)0.052 (2)0.0029 (18)0.007 (2)0.002 (2)
C40.054 (2)0.046 (2)0.070 (3)0.012 (2)0.006 (2)0.004 (2)
C50.039 (2)0.064 (3)0.075 (3)0.004 (2)0.011 (2)0.014 (2)
C60.053 (3)0.093 (3)0.071 (3)0.005 (3)0.022 (2)0.019 (3)
C7A0.043 (2)0.051 (2)0.058 (3)0.006 (2)0.001 (2)0.0026 (19)
C70.055 (3)0.076 (3)0.056 (3)0.014 (2)0.006 (2)0.009 (2)
C80.066 (3)0.044 (2)0.098 (4)0.005 (2)0.001 (3)0.002 (2)
C90.085 (3)0.050 (3)0.116 (5)0.003 (3)0.011 (3)0.037 (3)
C100.073 (3)0.073 (3)0.061 (3)0.002 (3)0.002 (3)0.038 (3)
C110.065 (3)0.060 (2)0.050 (2)0.003 (2)0.002 (2)0.018 (2)
C11A0.0330 (18)0.0412 (18)0.0393 (19)0.0029 (16)0.0005 (18)0.0061 (18)
Geometric parameters (Å, º) top
O1—C21.223 (4)C6—C71.513 (5)
O2—C101.208 (5)C6—H6A0.9700
C1—C21.509 (5)C6—H6B0.9700
C1—C11A1.541 (4)C7A—C71.516 (5)
C1—H1A0.9700C7A—C81.518 (5)
C1—H1B0.9700C7A—C11A1.546 (4)
C2—C31.489 (4)C7A—H7A0.9800
C3—C41.519 (5)C7—H7B0.9700
C3—H3A0.9700C7—H7C0.9700
C3—H3B0.9700C8—C91.540 (6)
C4A—C51.528 (6)C8—H8A0.9700
C4A—C41.530 (5)C8—H8B0.9700
C4A—C11A1.543 (4)C9—C101.474 (6)
C4A—H4A0.9800C9—H9A0.9700
C4—H4B0.9700C9—H9B0.9700
C4—H4C0.9700C10—C111.494 (6)
C5—C61.513 (5)C11—C11A1.543 (5)
C5—H5A0.9700C11—H11A0.9700
C5—H5B0.9700C11—H11B0.9700
C2—C1—C11A113.3 (3)C7—C7A—C8112.3 (3)
C2—C1—H1A108.9C7—C7A—C11A112.9 (3)
C11A—C1—H1A108.9C8—C7A—C11A111.8 (3)
C2—C1—H1B108.9C7—C7A—H7A106.4
C11A—C1—H1B108.9C8—C7A—H7A106.4
H1A—C1—H1B107.7C11A—C7A—H7A106.4
O1—C2—C3121.7 (4)C6—C7—C7A111.8 (3)
O1—C2—C1121.4 (3)C6—C7—H7B109.3
C3—C2—C1116.8 (3)C7A—C7—H7B109.3
C2—C3—C4113.7 (3)C6—C7—H7C109.3
C2—C3—H3A108.8C7A—C7—H7C109.3
C4—C3—H3A108.8H7B—C7—H7C107.9
C2—C3—H3B108.8C7A—C8—C9111.8 (3)
C4—C3—H3B108.8C7A—C8—H8A109.3
H3A—C3—H3B107.7C9—C8—H8A109.3
C5—C4A—C4111.8 (3)C7A—C8—H8B109.3
C5—C4A—C11A112.1 (3)C9—C8—H8B109.3
C4—C4A—C11A112.2 (3)H8A—C8—H8B107.9
C5—C4A—H4A106.8C10—C9—C8112.5 (4)
C4—C4A—H4A106.8C10—C9—H9A109.1
C11A—C4A—H4A106.8C8—C9—H9A109.1
C3—C4—C4A112.2 (3)C10—C9—H9B109.1
C3—C4—H4B109.2C8—C9—H9B109.1
C4A—C4—H4B109.2H9A—C9—H9B107.8
C3—C4—H4C109.2O2—C10—C9122.1 (5)
C4A—C4—H4C109.2O2—C10—C11122.6 (5)
H4B—C4—H4C107.9C9—C10—C11115.3 (4)
C6—C5—C4A112.7 (3)C10—C11—C11A112.8 (3)
C6—C5—H5A109.0C10—C11—H11A109.0
C4A—C5—H5A109.0C11A—C11—H11A109.0
C6—C5—H5B109.0C10—C11—H11B109.0
C4A—C5—H5B109.0C11A—C11—H11B109.0
H5A—C5—H5B107.8H11A—C11—H11B107.8
C7—C6—C5111.4 (3)C1—C11A—C4A108.8 (3)
C7—C6—H6A109.3C1—C11A—C11108.1 (3)
C5—C6—H6A109.3C4A—C11A—C11110.7 (3)
C7—C6—H6B109.3C1—C11A—C7A112.5 (3)
C5—C6—H6B109.3C4A—C11A—C7A109.0 (3)
H6A—C6—H6B108.0C11—C11A—C7A107.7 (3)
C11A—C1—C2—O1137.5 (4)C9—C10—C11—C11A52.4 (5)
C11A—C1—C2—C346.3 (5)C2—C1—C11A—C4A51.6 (4)
O1—C2—C3—C4140.7 (4)C2—C1—C11A—C1168.7 (4)
C1—C2—C3—C443.1 (5)C2—C1—C11A—C7A172.5 (3)
C2—C3—C4—C4A47.0 (5)C5—C4A—C11A—C169.7 (4)
C5—C4A—C4—C371.3 (4)C4—C4A—C11A—C157.1 (4)
C11A—C4A—C4—C355.5 (5)C5—C4A—C11A—C11171.6 (3)
C4—C4A—C5—C6178.6 (3)C4—C4A—C11A—C1161.6 (4)
C11A—C4A—C5—C654.5 (4)C5—C4A—C11A—C7A53.3 (4)
C4A—C5—C6—C753.7 (5)C4—C4A—C11A—C7A179.9 (3)
C5—C6—C7—C7A53.8 (5)C10—C11—C11A—C166.7 (4)
C8—C7A—C7—C6177.0 (3)C10—C11—C11A—C4A174.2 (3)
C11A—C7A—C7—C655.5 (4)C10—C11—C11A—C7A55.0 (4)
C7—C7A—C8—C9176.2 (3)C7—C7A—C11A—C166.4 (4)
C11A—C7A—C8—C955.7 (5)C8—C7A—C11A—C161.4 (4)
C7A—C8—C9—C1049.4 (5)C7—C7A—C11A—C4A54.4 (4)
C8—C9—C10—O2132.4 (4)C8—C7A—C11A—C4A177.8 (3)
C8—C9—C10—C1148.1 (5)C7—C7A—C11A—C11174.6 (3)
O2—C10—C11—C11A128.0 (4)C8—C7A—C11A—C1157.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.583.374 (6)140
Symmetry code: (i) x+1, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds