metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium 3,5-di­nitro­benzoate

CROSSMARK_Color_square_no_text.svg

aColloids, Crystals and Interfaces Group, School of Chemical Engineering and Analytical Sciences, The University of Manchester, PO Box 88, Manchester M60 1QD, England
*Correspondence e-mail: h.jones-2@postgrad.manchester.ac.uk

(Received 5 April 2005; accepted 10 May 2005; online 14 May 2005)

Sodium 3,5-di­nitro­benzoate, Na+·C7H3N2O6, was obtained by evaporation at room temperature of an aqueous solution of ethyl­enedi­ammonium 3,5-di­nitro­benzoate in sodium hydrox­ide. The structure is trigonal and the benzoate ion has twofold crystallographic symmetry.

Comment

During work on crystallization of the salt ethyl­enedi­ammonium 3,5-di­nitro­benzoate, an aqueous solution of the salt at pH 12 was prepared and allowed to evaporate at room temperature, giving red prisms of sodium 3,5-di­nitro­benzoate (NaDNB), (I[link]). The crystal structure was not found in the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) and hence its structure was determined by single-crystal X-ray diffraction at 150 K.[link]

[Scheme 1]

The benzoate ion is on a twofold axis of symmetry, passing through the carboxylate group (Fig. 1[link]).

[Figure 1]
Figure 1
View of NaDNB, showing the whole benzoate anion. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x − y, −y, −z + [2\over3].]
[Figure 2]
Figure 2
The packing of sodium 3,5-di­nitro­benzoate, viewed along the c axis, showing the threefold symmetry.
[Figure 3]
Figure 3
The twofold axis of symmetry perpendicular to the c axis.

Experimental

3,5-Di­nitro­benzoic acid (Aldrich, 99%) was dissolved in sodium hydro­xide solution and a solution of ethyl­enedi­amine (Aldrich, 99%) was added. The solution was filtered and the pH recorded as 12.14. The solution pH was measured using an Accumet Basic AB15 pH meter with an Accumet glass calomel pH electrode. The solution was allowed to evaporate to dryness in air at room temperature. Crystals of ethyl­enedi­ammonium 3,5-di­nitro­benzoate, sodium hydro­xide and red prisms of sodium 3,5-di­nitro­benzoate formed.

Crystal data
  • Na+·C7H3N2O6

  • Mr = 234.1

  • Trigonal, P3121

  • a = 10.7701 (5) Å

  • c = 6.3526 (2) Å

  • V = 638.15 (5) Å3

  • Z = 3

  • Dx = 1.828 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2522 reflections

  • θ = 1.0–27.5°

  • μ = 0.20 mm−1

  • T = 150 K

  • Prism, red

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thick-slice φ and ω scans

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.796, Tmax = 0.951

  • 3498 measured reflections

  • 554 independent reflections

  • 537 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −12 → 13

  • k = −8 → 13

  • l = −8 → 8

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.09

  • 554 reflections

  • 76 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1582P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.14 (2)

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. The choice of space group P3121 rather than P3221 is arbitrary. All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SORTAV (Blessing, 1987[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.],1989[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.], SCALEPACK and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Sodium 3,5-dinitrobenzoate top
Crystal data top
Na+·C7H3N2O6Dx = 1.828 Mg m3
Mr = 234.1Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 2522 reflections
Hall symbol: P 31 2"θ = 1.0–27.5°
a = 10.7701 (5) ŵ = 0.20 mm1
c = 6.3526 (2) ÅT = 150 K
V = 638.15 (5) Å3Prism, red
Z = 30.25 × 0.25 × 0.25 mm
F(000) = 354
Data collection top
Nonius KappaCCD
diffractometer
554 independent reflections
Radiation source: Enraf Nonius FR590537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1213
Tmin = 0.796, Tmax = 0.951k = 813
3498 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.1582P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
554 reflectionsΔρmax = 0.24 e Å3
76 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.14 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2002 (2)10.16670.0113 (5)
C20.3418 (2)10.16670.0122 (5)
C30.3701 (2)0.92732 (19)0.0104 (2)0.0131 (4)
H30.30330.87860.09520.016*
O30.11648 (14)0.93745 (13)0.01613 (17)0.0138 (3)
C40.4994 (2)0.9287 (2)0.0143 (2)0.0151 (4)
C50.6034 (2)10.16670.0155 (5)
H50.689710.16670.019*
N20.52972 (17)0.85204 (18)0.1513 (2)0.0186 (4)
Na10.87486 (9)0.87486 (9)00.0131 (3)
O10.63430 (15)0.83610 (16)0.1274 (2)0.0242 (4)
O20.45083 (19)0.8090 (2)0.3043 (2)0.0329 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0111 (8)0.0108 (11)0.0118 (10)0.0054 (5)0.0016 (4)0.0031 (8)
C20.0115 (9)0.0135 (11)0.0122 (10)0.0067 (6)0.0012 (4)0.0024 (9)
C30.0136 (9)0.0142 (9)0.0121 (8)0.0073 (7)0.0010 (6)0.0001 (6)
O30.0118 (6)0.0162 (7)0.0133 (6)0.0069 (5)0.0013 (4)0.0010 (5)
C40.0170 (8)0.0185 (9)0.0132 (8)0.0115 (7)0.0009 (6)0.0006 (7)
C50.0130 (9)0.0179 (13)0.0173 (11)0.0089 (6)0.0002 (5)0.0005 (9)
N20.0179 (8)0.0226 (9)0.0183 (7)0.0125 (7)0.0007 (6)0.0056 (6)
Na10.0131 (4)0.0131 (4)0.0128 (4)0.0064 (4)0.00068 (18)0.00068 (18)
O10.0170 (7)0.0323 (9)0.0300 (7)0.0174 (7)0.0027 (6)0.0104 (6)
O20.0356 (9)0.0548 (11)0.0228 (7)0.0335 (9)0.0132 (6)0.0209 (7)
Geometric parameters (Å, º) top
C1—O31.2547 (16)O3—Na1ii2.3416 (14)
C1—C21.525 (3)C4—C51.386 (2)
C2—C31.389 (2)C4—N21.471 (2)
C3—C41.386 (2)C5—H50.93
C3—H30.93N2—O21.220 (2)
O3—Na1i2.3083 (11)N2—O11.231 (2)
O3iii—C1—O3126.5 (2)O3iv—Na1—O3v167.89 (8)
O3—C1—C2116.77 (11)O3v—Na1—O3vi86.31 (5)
C3iii—C2—C3119.9 (2)O3v—Na1—O3vii102.24 (5)
C3—C2—C1120.06 (11)O3vi—Na1—O3vii91.20 (7)
C4—C3—C2118.90 (16)O3iv—Na1—O179.55 (5)
C4—C3—H3120.5O3v—Na1—O193.24 (5)
C2—C3—H3120.5O3vi—Na1—O182.64 (5)
C1—O3—Na1i131.53 (9)O3vii—Na1—O1162.96 (5)
C1—O3—Na1ii125.81 (12)O1viii—Na1—O1107.43 (8)
Na1i—O3—Na1ii85.34 (5)O3iv—Na1—Na1ix47.77 (3)
C3—C4—C5123.23 (16)O3v—Na1—Na1ix143.85 (5)
C3—C4—N2119.02 (15)O3vi—Na1—Na1ix77.64 (3)
C5—C4—N2117.74 (16)O3vii—Na1—Na1ix46.88 (4)
C4iii—C5—C4115.8 (2)O1viii—Na1—Na1ix108.62 (3)
C4—C5—H5122.1O1—Na1—Na1ix116.10 (3)
O2—N2—O1123.91 (16)Na1ix—Na1—Na1x100.20 (3)
O2—N2—C4118.34 (14)N2—O1—Na1160.96 (12)
O1—N2—C4117.74 (15)
Symmetry codes: (i) y+1, xy+1, z+1/3; (ii) x1, y, z; (iii) xy+1, y+2, z1/3; (iv) x+1, x+y, z+1/3; (v) x+y, x+1, z1/3; (vi) y, x+1, z; (vii) x+1, y, z; (viii) y, x, z; (ix) y+2, xy+1, z+1/3; (x) x+y+1, x+2, z1/3.
 

Footnotes

Current address: Pharmaceutical R&D, Pfizer Global R&D (IPC 435), Ramsgate Road, Sandwich, Kent CT13 9NJ, England

Acknowledgements

The authors thank Sanofī–Aventis Ltd for funding.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds