Download citation
Download citation
link to html
In the title mol­ecule, C13H21NS2, the Csp2—S and C=S bond lengths are 1.770 (3) and 1.685 (3) Å, respectively. An inter­molecular N—H...S hydrogen bond defines the preferred conformation of the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805018180/cv6526sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805018180/cv6526Isup2.hkl
Contains datablock I

CCDC reference: 277240

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.044
  • wR factor = 0.112
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 45 Perc. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.85 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C7 .. 5.20 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C10 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
C13H21NS2F(000) = 552
Mr = 255.43Dx = 1.224 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 816 reflections
a = 19.9786 (17) Åθ = 2.3–24.2°
b = 5.3550 (4) ŵ = 0.36 mm1
c = 13.5855 (12) ÅT = 293 K
β = 107.507 (2)°Plate, yellow
V = 1386.1 (2) Å30.12 × 0.09 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD 1K
diffractometer
1362 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.099
ω scansθmax = 27°, θmin = 1.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.958, Tmax = 0.986k = 66
11770 measured reflectionsl = 1717
3025 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 0.83Δρmax = 0.18 e Å3
3025 reflectionsΔρmin = 0.18 e Å3
150 parameters
Special details top

Experimental. The intensity data was collected on a Bruker SMART CCD 1 K diffractometer using an exposure time of 25 s/frame. A total of 1650 frames were collected with a frame width of 0.3° covering up to θ = 27.0° with 100% completeness accomplished. The first 50 frames were recollected at the end of each data collection to check for decay; none was found.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41452 (4)0.33778 (15)0.24081 (6)0.0523 (3)
S20.25853 (4)0.31658 (16)0.20017 (6)0.0626 (3)
N10.23173 (12)0.6933 (5)0.35005 (19)0.0477 (6)
C10.38711 (15)0.0860 (5)0.1517 (2)0.0599 (9)
H1A0.3610.03260.17840.09*
H1B0.42760.00570.14180.09*
H1C0.3580.14930.08680.09*
C20.33689 (13)0.4396 (5)0.2656 (2)0.0422 (7)
C30.34984 (12)0.6235 (5)0.34186 (19)0.0372 (7)
C40.42137 (13)0.7247 (5)0.3983 (2)0.0455 (7)
H4A0.44330.79590.34990.055*
H4B0.45130.59310.43680.055*
C50.40990 (14)0.9257 (5)0.4713 (2)0.0528 (8)
H5A0.43720.88850.54190.063*
H5B0.42421.08770.45280.063*
C60.33212 (12)0.9267 (5)0.46115 (19)0.0442 (7)
H6A0.32450.8810.5260.053*
H6B0.31211.09080.4410.053*
C70.29978 (14)0.7387 (5)0.37969 (19)0.0394 (7)
C80.18007 (13)0.7888 (5)0.3966 (2)0.0470 (7)
H80.19810.94410.43320.056*
C90.16873 (17)0.6045 (7)0.4729 (3)0.0833 (12)
H9A0.21210.58450.52850.1*
H9B0.15670.44390.43920.1*
C100.1111 (2)0.6838 (8)0.5176 (3)0.1061 (14)
H10A0.10360.55320.56270.127*
H10B0.12560.83360.55870.127*
C110.04421 (18)0.7333 (7)0.4348 (3)0.0807 (11)
H11A0.02680.5790.39870.097*
H11B0.00930.79430.46550.097*
C120.05494 (18)0.9208 (8)0.3604 (3)0.0944 (13)
H12A0.06691.08020.39520.113*
H12B0.01140.94190.3050.113*
C130.11287 (16)0.8451 (7)0.3146 (3)0.0756 (10)
H13A0.0980.69870.27140.091*
H13B0.12060.97930.27130.091*
H10.2170 (14)0.578 (5)0.297 (2)0.067 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0507 (5)0.0586 (5)0.0517 (5)0.0051 (4)0.0214 (4)0.0040 (4)
S20.0504 (5)0.0741 (6)0.0619 (5)0.0098 (4)0.0146 (4)0.0258 (5)
N10.0378 (14)0.0601 (17)0.0485 (15)0.0052 (13)0.0179 (12)0.0128 (14)
C10.076 (2)0.053 (2)0.056 (2)0.0106 (16)0.0275 (17)0.0027 (15)
C20.0446 (17)0.0442 (17)0.0401 (16)0.0008 (13)0.0160 (13)0.0076 (14)
C30.0338 (15)0.0425 (18)0.0365 (15)0.0000 (12)0.0124 (12)0.0022 (13)
C40.0393 (15)0.0501 (18)0.0461 (16)0.0009 (13)0.0112 (13)0.0005 (15)
C50.0514 (19)0.059 (2)0.0471 (18)0.0121 (15)0.0140 (15)0.0069 (16)
C60.0460 (18)0.0475 (18)0.0398 (17)0.0075 (13)0.0140 (14)0.0060 (13)
C70.0410 (16)0.0432 (17)0.0332 (14)0.0060 (13)0.0100 (12)0.0022 (13)
C80.0429 (17)0.0526 (19)0.0497 (17)0.0031 (14)0.0203 (14)0.0083 (15)
C90.066 (2)0.118 (3)0.072 (2)0.022 (2)0.029 (2)0.038 (2)
C100.093 (3)0.172 (4)0.072 (3)0.008 (3)0.053 (2)0.009 (3)
C110.066 (2)0.093 (3)0.099 (3)0.009 (2)0.049 (2)0.014 (2)
C120.062 (2)0.105 (3)0.127 (4)0.032 (2)0.045 (2)0.014 (3)
C130.055 (2)0.102 (3)0.076 (2)0.022 (2)0.0295 (18)0.029 (2)
Geometric parameters (Å, º) top
S1—C21.770 (3)C6—H6A0.97
S1—C11.785 (3)C6—H6B0.97
S2—C21.685 (3)C8—C131.495 (4)
N1—C71.319 (3)C8—C91.496 (4)
N1—C81.456 (3)C8—H80.98
N1—H10.93 (3)C9—C101.515 (4)
C1—H1A0.96C9—H9A0.97
C1—H1B0.96C9—H9B0.97
C1—H1C0.96C10—C111.489 (4)
C2—C31.396 (3)C10—H10A0.97
C3—C71.398 (3)C10—H10B0.97
C3—C41.505 (3)C11—C121.486 (5)
C4—C51.528 (3)C11—H11A0.97
C4—H4A0.97C11—H11B0.97
C4—H4B0.97C12—C131.525 (4)
C5—C61.518 (3)C12—H12A0.97
C5—H5A0.97C12—H12B0.97
C5—H5B0.97C13—H13A0.97
C6—C71.492 (3)C13—H13B0.97
C2—S1—C1104.74 (13)N1—C8—C13110.0 (2)
C7—N1—C8127.1 (2)N1—C8—C9110.1 (2)
C7—N1—H1114.6 (17)C13—C8—C9111.1 (2)
C8—N1—H1118.2 (17)N1—C8—H8108.5
S1—C1—H1A109.5C13—C8—H8108.5
S1—C1—H1B109.5C9—C8—H8108.5
H1A—C1—H1B109.5C8—C9—C10112.6 (3)
S1—C1—H1C109.5C8—C9—H9A109.1
H1A—C1—H1C109.5C10—C9—H9A109.1
H1B—C1—H1C109.5C8—C9—H9B109.1
C3—C2—S2127.1 (2)C10—C9—H9B109.1
C3—C2—S1112.41 (19)H9A—C9—H9B107.8
S2—C2—S1120.49 (17)C11—C10—C9111.4 (3)
C2—C3—C7126.2 (2)C11—C10—H10A109.4
C2—C3—C4124.6 (2)C9—C10—H10A109.4
C7—C3—C4109.2 (2)C11—C10—H10B109.4
C3—C4—C5106.2 (2)C9—C10—H10B109.4
C3—C4—H4A110.5H10A—C10—H10B108
C5—C4—H4A110.5C12—C11—C10110.7 (3)
C3—C4—H4B110.5C12—C11—H11A109.5
C5—C4—H4B110.5C10—C11—H11A109.5
H4A—C4—H4B108.7C12—C11—H11B109.5
C6—C5—C4107.0 (2)C10—C11—H11B109.5
C6—C5—H5A110.3H11A—C11—H11B108.1
C4—C5—H5A110.3C11—C12—C13112.4 (3)
C6—C5—H5B110.3C11—C12—H12A109.1
C4—C5—H5B110.3C13—C12—H12A109.1
H5A—C5—H5B108.6C11—C12—H12B109.1
C7—C6—C5105.6 (2)C13—C12—H12B109.1
C7—C6—H6A110.6H12A—C12—H12B107.9
C5—C6—H6A110.6C8—C13—C12111.7 (3)
C7—C6—H6B110.6C8—C13—H13A109.3
C5—C6—H6B110.6C12—C13—H13A109.3
H6A—C6—H6B108.8C8—C13—H13B109.3
N1—C7—C3126.3 (2)C12—C13—H13B109.3
N1—C7—C6121.8 (2)H13A—C13—H13B107.9
C3—C7—C6111.9 (2)
S2—C2—C7—N10.9 (2)C1—S1—C2—S25.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.93 (3)2.24 (3)3.026 (3)142 (2)
Comparative geometrical data (Å, °) for N,S bidentate ligands bonded to Rh(I) vs. cacsmH. top
LigandS2—C2S1—C1C3—C2—S2C3—C7—N1S1—C2—S2Reference
cacsmH1.685 (3)1.785 (3)127.1 (2)126.3 (2)120.49 (17)a
cacsm1.710 (5)1.772 (7)128.2 (4)129.4 (4)116.1 (3)b
macsm1.713 (5)1.775 (7)128.2 (4)128.8 (5)117.0 (3)c
hacsm1.707 (5)1.776 (7)128.2 (4)128.8 (5)118.1 (3)d
(a) This work; (b) Steyn & Roodt (2001); (c) Steyn et al., 1992); (d) Steyn et al., 1997).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds